CIVIL ENGINEERING

College of Engineering and Computer Science

Program Description

Civil Engineering involves the application of scientific principles and knowledge of mathematics and computers to the planning, analysis, design, and construction of all types of private and public works. Reduction of air and water pollution, disposal of hazardous wastes, renewal of our old cities, planning and building of new communities, providing water, power, and high-speed ground transportation systems are the responsibilities of the civil engineer. It is a continual challenge to the civil engineer to provide these services efficiently by the construction of dams, buildings, bridges, tunnels, highways, airports, waterways, and waste handling facilities in harmony with the natural environment.

Because of the broad range of demands on the civil engineer’s services, the undergraduate program is devoted to fundamental principles in mathematics; basic and engineering sciences; the spectrum of Civil Engineering practice in both analysis and design; and required courses in the humanities and the social sciences, so that engineers may better relate to the world and society they serve. The upper division program permits students to select 9 units (3 courses) of electives. Students may increase the breadth or depth of their knowledge in Civil Engineering by selecting these electives in several areas: environmental and water quality engineering, geotechnical engineering, structural engineering, transportation, and water resources engineering.

Degree Programs

BS in Civil Engineering (http://catalog.csus.edu/colleges/engineering-computer-science/engineering-civil/bs-in-civil-engineering)

Certificate in Wastewater Treatment (http://catalog.csus.edu/colleges/engineering-computer-science/engineering-civil/certificate-in-wastewater-treatment)

Cooperative Education Program (Work Experience) (http://catalog.csus.edu/colleges/engineering-computer-science/engineering-civil/cooperative-education-program-work-experience)

MS in Civil Engineering (http://catalog.csus.edu/colleges/engineering-computer-science/engineering-civil/ms-in-civil-engineering)

Certificate in Engineering Hydraulics (http://catalog.csus.edu/colleges/engineering-computer-science/engineering-civil/certificate-in-engineering-hydraulics)

Certificate in Foundation Engineering (http://catalog.csus.edu/colleges/engineering-computer-science/engineering-civil/certificate-in-foundation-engineering)

Certificate in Geo-Environmental (http://catalog.csus.edu/colleges/engineering-computer-science/engineering-civil/certificate-in-geo-environmental)

Certificate in Ground Modification (http://catalog.csus.edu/colleges/engineering-computer-science/engineering-civil/certificate-in-ground-modification)

Certificate in Structural Engineering (http://catalog.csus.edu/colleges/engineering-computer-science/engineering-civil/certificate-in-structural-engineering)

Certificate in Transportation Planning (http://catalog.csus.edu/colleges/engineering-computer-science/engineering-civil/certificate-in-transportation-planning)

Certificate in Transportation/Traffic Engineering (http://catalog.csus.edu/colleges/engineering-computer-science/engineering-civil/certificate-in-transportation-traffic-engineering)

Certificate in Water Quality (http://catalog.csus.edu/colleges/engineering-computer-science/engineering-civil/certificate-in-water-quality)

Accreditation

In addition to California State University, Sacramento’s full accreditation by the Western Association of Schools and Colleges, the Bachelor of Science in Civil Engineering is also individually accredited by ABET, Inc.

Licensure and Credentialing Disclosure

Admission into programs leading to licensure and credentialing does not guarantee that students will obtain a license or credential. Licensure and credentialing requirements are set by agencies that are not controlled by or affiliated with the CSU and requirements can change at any time. For example, licensure or credentialing requirements can include evidence of the right to work in the United States (e.g., social security number or tax payer identification number) or successfully passing a criminal background check. Students are responsible for determining whether they can meet licensure or credentialing requirements. The CSU will not refund tuition, fees, or any associated costs, to students who determine subsequent to admission that they cannot meet licensure or credentialing requirements. Information concerning licensure and credentialing requirements are available from the Dean of Undergraduate Studies, Sacramento Hall 234, (916) 278-5344.

Special Features

- The BSCE degree is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, Inc. (EAC/ABET).
- A notable strength of the program is that most faculty are licensed professional engineers in California and have practical experience in industry. Thus, faculty bring an ability to relate theory to practice, and the program prepares the student for the profession as well as for advanced study.
- Emphasis is placed on design which is the definition and solution of engineering problems in a practical manner. Lower division and first semester junior year coursework provides the preparation for design in courses such as mathematics, physics, descriptive geometry, CAD, surveying, computer applications, and engineering economics. Design courses are available to students in their last three semesters including a senior design project course in the final semester.
- Class sizes are small providing for close interaction between students and faculty. This interaction is enhanced in laboratory courses which are an integral part of the curriculum.
- Computers are used in many courses and students have free access to computer laboratories.
- Communication skills and social and ethical responsibilities of professional practice are emphasized.
- Students are encouraged to participate in the Student Chapter of American Society of Civil Engineers and other student organizations,
to develop organizational skills, and to interact with practicing civil engineers.

- Sacramento, the State Capital and the seat of county government, provides proximity to city, county, state and federal agencies, and many consulting firms with Civil Engineering departments. Thus, students have a unique environment to draw upon for semester projects, part-time or summer employment, and career opportunities.

Program Educational Objectives
The objectives of the civil engineering are to prepare graduates to:

- ethically apply their hands-on, practice-oriented civil engineering education to succeed professionally;
- engage in lifelong learning through graduate education, professional development, and/or active involvement in professional organizations; and
- communicate effectively on multi-disciplinary teams to address diverse challenges, creating solutions that serve the general public.

Academic Policies and Procedures
The following is a summary of policies and procedures specific to the Department of Civil Engineering. Other University policies and procedures in this catalog also apply to Civil Engineering majors. The Department will not hear petitions for deviation from articulated policies made by students who disregard catalog policy.

- **Course Repeat Policy:** Undergraduate engineering and Civil Engineering courses that are used to meet the Bachelor of Science in Civil Engineering degree requirements may be repeated only twice (for a total of three attempts). Grades of the second and third attempt will be averaged in grade point calculations.

- **Reinstatement Policy:** Students seeking reinstatement to the Civil Engineering major must complete a Reinstatement Petition (obtained at Admissions and Records). That petition will be reviewed by the Department Chair for approval or rejection.

 Note: The only basis for reinstatement is the expectation (supported by evidence provided by the student) that the student is now likely to progress towards the satisfactory completion of the Department’s degree requirements in a timely manner.

- **Minimum Grade Requirements:** The purpose of this requirement is to assure that all Civil Engineering majors attain the minimum level of competency in all their coursework required for a Bachelor of Science in Civil Engineering Degree.

 All required courses in the major, all electives in the major, ENGL 5, and ENGL 20 must be completed with a grade of "C-" or better. A minimum grade point average of 2.0 ("C") is required in the major courses applied to the degree.

- **Incomplete Grades:** Incomplete grades are issued only in accordance with University policy. The student must be passing the course at the time an "Incomplete" is requested. An Incomplete Petition (obtained in the Department Office) must be submitted to the Department with the student’s and the course instructor’s signature. The Incomplete Petition must specify the work to be completed, the basis by which the student’s final grade will be determined, and the last date for completion of the incomplete work. An incomplete grade that is not cleared by the set date will lapse to an F grade.

Career Possibilities
Bridge Engineer · Civil Engineer · Construction Engineer · Design Engineer · Environmental Engineer · Foundation Engineer · Geotechnical Engineer · Highway Engineer · Hydraulic Engineer · Hydrologic Engineer · Project Engineer · Public Works Engineer · Research Engineer · Sanitary Engineer · Soils Engineer · Structural Engineer · Traffic Engineer · Transportation Engineer · Urban Planner · Water Resources Engineer

Contact Information
Benjamin Fell, Department Chair
Ashley Mihok, Administrative Support Coordinator
Riverside Hall 4024
(916) 278-6982
Department of Civil Engineering Website (http://www.ecs.csus.edu/ce)

Faculty
ARMSTRONG, RICHARD
ARYANI, CYRUS
DAMMEL, EUGENE E.
FELL, BENJAMIN
FOGARTY, JULIE
GARCIA, JOSE
GHODRAT ABADI, MASOUD
HANSEN, KAREN L.
JOHNSTON, JOHN
KHAN, GHAZAN
MAHMOOD, RAMZI J.
MATSUMOTO, ERIC E.
MERAYYAN, SAAD
MOTLAGH, AMIR
POINDEXTER, CRISTINA
SCOTT-HALLET, KIMBERLY

CE 1A. Civil Engineering Seminar. 1 Unit
General Education Area/Graduation Requirement: Understanding Personal Development (E)
Term Typically Offered: Fall, Spring

Introduces students to civil engineering as a profession. Topics include the technical disciplines (environmental, geotechnical, structural, transportation, and water resources), the role of civil engineers in planning, constructing and operating infrastructure, and professional responsibilities such as licensure and ethics. Case studies are used to explore both technical and nontechnical aspects of civil engineering projects such as design and environmental constraints, constructability, and social and political issues.
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Units</th>
<th>General Education Area/Graduation Requirement</th>
<th>Prerequisite(s)</th>
<th>Term Typically Offered</th>
<th>Corequisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 4</td>
<td>Engineering Graphics and CAD.</td>
<td>2</td>
<td></td>
<td></td>
<td>Fall, Spring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Education Area/Graduation Requirement: Understanding Personal Development (E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term Typically Offered: Fall, Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In-depth graphic analysis and solution of typical three dimensional space problems by applying the principles of orthogonal projection. Fundamentals of interactive computer aided design and drafting. Lecture one hour; laboratory three hours.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 9</td>
<td>Plane and Topographic Surveying.</td>
<td>3</td>
<td></td>
<td></td>
<td>Fall, Spring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): MATH 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term Typically Offered: Fall, Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Instruments, methods and theories necessary for the measurement of distance, direction, angles and elevations. Application of data to traverse computations, estimation of earthwork volumes, transportation facility design and construction layout. Introduction to legal aspects of surveying, geodetic surveys, maps, boundary surveys and new technologies used in surveying. Lecture two hours; laboratory three hours.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 100</td>
<td>Engineering Geology.</td>
<td>2</td>
<td></td>
<td></td>
<td>Fall, Spring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): ENGR 112; may be taken concurrently.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term Typically Offered: Fall, Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil and rock mechanics and their relations to geological features influencing design, construction and maintenance of engineering projects. Lectures and field problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 101</td>
<td>Computer Applications in Civil Engineering.</td>
<td>3</td>
<td></td>
<td></td>
<td>Fall, Spring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): ENGR 30 and CE 4; CE 4 may be taken concurrently.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term Typically Offered: Fall, Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Development of programming- and algorithm-based problem-solving skills in civil engineering using modern programming and scripting languages and scientific computing programs. Application to numerical methods, data science, and visualization.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 113</td>
<td>Structural Laboratory.</td>
<td>1</td>
<td></td>
<td></td>
<td>Fall, Spring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): CE 101 and ENGR 112; WPJ score of 70+, or at least a "C." in ENGL 109M or ENGL 109W.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Education Area/Graduation Requirement: Further Studies in Area B (B5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term Typically Offered: Fall, Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to the principles of structural analysis and design by testing of structural elements. Experimental verification of the assumptions of strength of materials. Introduction to laboratory techniques. Laboratory three hours.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 135</td>
<td>Hydraulics Laboratory.</td>
<td>4</td>
<td></td>
<td></td>
<td>Fall, Spring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): CE 101, CE 137, and GWAR certification before Fall 2009; CE 137 may be taken concurrently</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term Typically Offered: Fall, Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratory experiments relating the principles of fluid mechanics to real fluid flow. Laboratory three hours.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 137</td>
<td>Water Resources Engineering.</td>
<td>3</td>
<td></td>
<td></td>
<td>Fall, Spring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): CE 1A, CE 101, ENGR 115, and ENGR 132.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term Typically Offered: Fall, Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrologic and hydraulic fundamentals which are common to water resources projects; introduction to reservoirs, dams, pipelines, channels, hydraulic machinery, ground water, water rights, statistical analysis, engineering economy applications, and water resources planning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 138</td>
<td>Hydrology.</td>
<td>3</td>
<td></td>
<td></td>
<td>Fall only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): CE 137.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term Typically Offered: Fall only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to hydrologic engineering design. Precipitation analysis, hydrograph and flood routing applications for civil engineering. Groundwater hydrology including quality problems in development of subsurface water resources. Statistical applications in hydrology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 139</td>
<td>Open Channel Hydraulics.</td>
<td>3</td>
<td></td>
<td></td>
<td>Spring only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): CE 137.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term Typically Offered: Spring only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Civil engineering design problems in open channel flow. Model design, pressure problems, design application of hydraulic analysis in structures, transitions, culverts, weirs and spillways. Channel design including roughness for subcritical and supercritical flow. Analyzes and design problems in steady, uniform, gradually and rapidly varied flow.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 146</td>
<td>Civil Engineering Professional Practice.</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): CE 1A and ENGR 30; GWAR; CE 1A may be taken concurrently</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term Typically Offered: Fall, Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to the legal and business environment of professional engineering practice, including legal responsibilities of professionals, ethics, risk and liability, types and use of contracts, specifications, the construction bid process, and environmental responsibilities. Elements of engineering organizations such as business economics, human resources, and project management.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 147</td>
<td>Transportation Engineering.</td>
<td>4</td>
<td></td>
<td></td>
<td>Spring only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): Complete CE 1A, CE 9, CE 101,ENGR 115, GWAR certification before Fall 2009; or WPJ score of 80 or above; or 3-unit placement in ENGL 109M/W; or 4-unit placement in ENGL 109M/W + co-enrollment in ENGL 109X; or WPJ score 70/71 + co-enrollment in ENGL 109X.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term Typically Offered: Fall, Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to the fundamental topics in Transportation Engineering. Focus on roadway geometric design, layout considerations, pavement materials and design, traffic operations and analysis. Lecture three hours; laboratory three hours.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 148</td>
<td>Transportation Systems.</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): CE 147</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term Typically Offered: Spring only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transportation systems evaluation and management. Focus on transportation planning methods, including data analysis, estimation of future demand, evaluation of travel demand impacts on existing systems, and transportation system decision-making.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 149</td>
<td>Traffic Analysis and Design.</td>
<td>3</td>
<td></td>
<td></td>
<td>Spring only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): CE 147</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term Typically Offered: Spring only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to the fundamental principles of traffic operations, traffic data collection methods, intersection control, signal design and analysis techniques. Methods and software for designing and optimizing signalized and unsignalized intersection operation. This course may be paired with CE 265.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CE 151. Introduction to GIS in Civil Engineering. 3 Units
Prerequisite(s): ENGR 115, CE 9, and either CE 137, CE 147, CE 170A, or CE 171A.
Term Typically Offered: Fall only
Fundamental geographic information system (GIS) concepts; GIS data acquisition and analysis; GIS analytical methods. Lab exercises with GIS software used to introduce students to typical uses of GIS in civil engineering. This course may be paired with the graduate-level course GIS Applications in Civil Engineering. Lecture two hours; lab three hours.

CE 161. Introduction to Structural Analysis. 3 Units
Prerequisite(s): CE 1A, CE 101, CE 146, ENGR 112, and MATH 35 or MATH 100. CE 146 may be taken concurrently.
General Education Area/Graduation Requirement: Further Studies in Area B (5)
Term Typically Offered: Fall, Spring
Analysis of statically determinate and indeterminate beams, frames, and trusses. Includes energy principles, flexibility and stiffness analyses, and influence lines. Computers are used to aid in the solution of complex structural problems.

CE 163. Structural Design in Steel I. 3 Units
Prerequisite(s): CE 161.
Term Typically Offered: Fall only
Theory and practice in design of structural steel members and connections using current design specifications. Design of tension and compression members, laterally supported and unsupported beams, beam-columns, and bolted and welded connections. Use of microcomputers in design.

CE 164. Reinforced Concrete Design. 3 Units
Prerequisite(s): CE 113, CE 161; CE 113 may be taken concurrently.
Term Typically Offered: Fall, Spring
Theory and practice in design of reinforced concrete beams, slabs, columns, footings and retaining walls. Includes study of design, preparation and testing of cements, aggregates and concrete mixtures.

CE 165. Seismic Behavior of Structures. 3 Units
Prerequisite(s): CE 101, CE 161, ENGR 110.
Term Typically Offered: Spring only
Analyzes simple structures’ response to dynamic loads with emphasis on response to earthquake ground motion. Introduction to multi-story buildings dynamics. Modal and approximate analyses of earthquake response. Dynamic analysis and building code procedures.

CE 168. Pre-stressed Concrete Design. 3 Units
Prerequisite(s): CE 161, CE 164; CE 164 may be taken concurrently.
Term Typically Offered: Fall only – even years

CE 169A. Timber Design. 3 Units
Prerequisite(s): CE 161.
Term Typically Offered: Fall only
Wood as a structural material. Design of sawn and glulam beams, concentrically and eccentrically loaded columns, shear walls, flexible diaphragms and connections for vertical and lateral loading including effects of wind and seismic forces.

CE 169B. Reinforced Masonry Design. 3 Units
Prerequisite(s): CE 161.
Term Typically Offered: Fall, Spring
Reinforced masonry as a structural material. Design of reinforced masonry beams, concentrically and eccentrically loaded columns, walls for vertical and lateral loading including effects of wind and seismic forces. Design of a small building for wind and seismic loading including torsional effects.

CE 170. Principles of Environmental Engineering. 4 Units
Prerequisite(s): CHEM 1E or CHEM 1A, CE 1A, CE 101, CE 146, ENGR 115; CE 146 may be taken concurrently
Term Typically Offered: Fall, Spring
Introduction to the principles and practices of environmental quality management. Physical and chemical principles affecting environmental quality. Water and air quality parameters, their importance, and natural processes that affect them. Introduction to treatment processes and waste management. Environmental ethics. Lecture three hours. Laboratory three hours.

CE 170A. Principles of Environmental Engineering. 3 Units
Prerequisite(s): CHEM 1E or CHEM 1A, ENGR 115, CE 1A, and CE 101. CE 101 may be taken concurrently.
Term Typically Offered: Fall, Spring

CE 170B. Environmental Engineering Practice. 2 Units
Prerequisite(s): CE 170A
Term Typically Offered: Fall, Spring

CE 171A. Soil Mechanics. 4 Units
Prerequisite(s): Complete CE 1A, CE 100, CE 101, ENGR 112; GWAR certification before Fall 2009 or WPJ score of 80 or above or 3-unit placement in ENGL 109M/W or 4-unit placement in ENGL 109M/W + co-enrollment in ENGL 109X; or WPJ score 70/71 + co-enrollment in ENGL 109X.
Term Typically Offered: Fall, Spring
Composition and properties of soils; soil classification; soil compaction; soil-water interaction, including permeability and seepage analyses; soil stresses; soil compressibility, consolidation, and settlement analysis; soil shear strength. Lecture three hours; laboratory three hours.

CE 171B. Soil Mechanics and Foundation Engineering. 3 Units
Prerequisite(s): CE 171A.
Term Typically Offered: Spring only
Lateral earth pressures and principles of retaining wall design; slope stability analysis and principles of slope stabilization design; ultimate bearing capacity of soils, allowable bearing pressures and settlement of structures; principles of foundation design including shallow foundations and deep foundations.
CE 172. Design of Urban Water and Sewer Systems. 3 Units
Prerequisite(s): CE 137.
Term Typically Offered: Fall only

Hydraulic design of water distribution and sewerage systems. Computer-assisted pipe network analysis. Analysis of pump systems. Pump station design. Other selected topics.

CE 173. Design of Water Quality Control Processes. 3 Units
Prerequisite(s): CE 170B, ENGR 132.
Term Typically Offered: Spring only

Analysis and design of selected physical, chemical, and biological facilities for water purification and wastewater treatment. Emphasis is on design based on loading factors and integration of unit processes into treatment systems.

CE 181. Geoenvironmental Engineering. 3 Units
Prerequisite(s): CE 170B and CE 171A; CE 170B may be taken concurrently
Term Typically Offered: Not offered

Equilibrium distribution of contaminants among air, water and solid phases of soil systems; analysis and modeling of soil vapor extraction (SVE), pump and treat, and soil washing systems; movement of gasses in landfills; infiltration through landfill cover; geosynthetic liner systems; hazardous waste containment systems.

CE 184. Geotechnical Earthquake Engineering. 3 Units
Prerequisite(s): CE 171A.
Term Typically Offered: Fall only

Introduction to seismology and seismic hazard analysis; determination of building code design loads; prediction of soil-site effects; evaluation of liquefaction triggering, cyclic softening and associated consequences; introduction to mitigation techniques for liquefaction and ground failure hazards.

CE 190A. Civil Engineering Project Skills. 3 Units
Prerequisite(s): CE 137 or CE 147 or CE 161 or CE 170A or CE 171A
General Education Area/Graduation Requirement: GE AREA D
Term Typically Offered: Fall, Spring

Introduction to professional engineering practice through case studies of existing projects, including estimating, scheduling, and specifications. Evaluation of design alternatives for engineering projects using principles of engineering economy and cost benefit analysis. Engineering ethics and professional responsibilities.

Note: Student must have taken or be registered for 3 of the 5 core civil engineering courses

Credit/No Credit

CE 190B. Senior Project. 3 Units
Prerequisite(s): CE 190A
Term Typically Offered: Fall, Spring

Culminating degree requirement. Completion of a conceptual design and evaluation of alternatives under realistic constraints for proposed infrastructure projects. Students work in teams with practicing professionals providing mentoring. Draws upon full educational experience to date. Lecture two hours. Laboratory three hours.

Note: This course must be taken in the final semester.

CE 194. Career Development in Civil Engineering. 1 Unit
Prerequisite(s): Instructor permission.
Term Typically Offered: Fall, Spring

Designed for Civil Engineering students making career decisions. Instruction will include effective career planning strategies and techniques including skill assessments, employment search strategy, goal setting, time management, interview techniques and resume writing. Lecture one hour.

Note: Units earned cannot be used to satisfy major requirements. Cross Listed: ENGR 194, EEE194

Credit/No Credit

CE 195. Fieldwork in Civil Engineering. 1 - 3 Units
Prerequisite(s): Petition approval by supervising faculty member and Department chair.
Term Typically Offered: Fall, Spring

Supervised work experience in civil engineering with public agencies or firms in the industry.

Note: May be repeated for credit.

Credit/No Credit

CE 195A. Professional Practice. 1 - 12 Units
Prerequisite(s): Instructor permission.
Term Typically Offered: Fall, Spring

Supervised employment in a professional engineering or computer science environment. Placement arranged through the College of Engineering and Computer Science.

Note: Requires satisfactory completion of the work assignment and a written report.

Credit/No Credit

CE 196M. Groundwater Engineering. 3 Units
Prerequisite(s): CE 137

CE 199. Special Problems. 1 - 3 Units
Term Typically Offered: Fall, Spring

Individual projects or directed reading.

Note: Open to students judged capable of carrying out individual work. Admission requires departmental approval and sponsorship of a supervising faculty member. Cannot be used as a technical elective in the major. Consult the CE Department for admission procedures and other requirements. May be repeated.
design. Microcomputer software is extensively used. Stiffness; solution by modal superposition; time-history and response of multi-degree systems: modeling of structure mass, damping and elastic behavior; spreadsheets; response spectra. Response of structures modeled as single-degree systems to harmonic, periodic, and arbitrary excitation and earthquake ground motion; effects of damping and material nonlinearity; numerical methods using computer software to perform analysis is discussed in detail. Techniques of computer modeling are discussed.

Computer Methods of Structural Analysis I. 3 Units

Prerequisite(s): CE 161.

Term Typically Offered: Fall only – even years

Continuation of CE 231A with extension of theory to allow for the analysis of a wider variety of structures. Structural analysis software is used for the analysis of three-dimensional structures. Fundamentals of the finite element method and computer modeling with applications to structural problems.

Computer Methods of Structural Analysis II. 3 Units

Prerequisite(s): CE 231A or instructor permission.

Term Typically Offered: Spring only – odd years

Theory and applications of nonlinear structural analysis including geometric and material nonlinear effects. Stability issues and second-order analysis methods in the context of moment amplification effects, member buckling, and the behavior of structural elements and frames undergoing large deformations. Inelastic material behavior and stress resultant plasticity concepts within a line-type element framework. Computer implementation of geometric nonlinear behavior.

Nonlinear Structural Analysis. 3 Units

Prerequisite(s): CE 231A or instructor permission.

Term Typically Offered: Spring only – odd years

Basic concepts of earthquake engineering and the response analysis of structures subjected to earthquakes. Response of structures modeled as single-degree systems to harmonic, periodic, and arbitrary excitation and earthquake ground motion; effects of damping and material nonlinearity; numerical methods using computer software; response spectra. Response of structures modeled as multi-degree systems: modeling of structure mass, damping and elastic stiffness; solution by modal superposition; time-history and response spectrum analysis; implications for codes for earthquake-resistant design. Microcomputer software is extensively used.

Advanced design methodology of steel structures using Load and Resistance Factor Design (LRFD). System level behavior, especially from a seismic loading perspective, is integrated into the design of steel components and connections. Other topics include plate girder design, plastic design of indeterminate systems, design of moment frame systems, and design of braced-frame systems.

Systems Analysis of Resources Development. 3 Units

Prerequisite(s): CE 163

Term Typically Offered: Fall, Spring

Investigation of resource planning using the "systems approach". Objectives of resource development; basic economic and technologic concepts, and economic factors affecting system design. Consideration of evaluation, institutional constraints, and uncertainty in water resources systems. Familiarization with modern computer techniques. Applications of concepts to air and land resources.

Water Resources Planning. 3 Units

Prerequisite(s): CE 250 or instructor permission.

Term Typically Offered: Fall only – odd years

Application of single and multi-objective planning to the design and operation of water resources projects. Objectives and constraints for water projects, criteria and procedures for evaluation, planning under uncertainty. Application in water development and water quality planning, with case studies.

Environmental Quality Processes I. 3 Units

Prerequisite(s): CE 170 or equivalent.

Term Typically Offered: Fall, Spring

Environmental Quality Processes II. 3 Units

Prerequisite(s): CE 170 or equivalent, CE 252A recommended, or instructor permission.

Term Typically Offered: Fall, Spring

Environmental Quality Processes III. 3 Units

Prerequisite(s): CE 170 or equivalent, CE 252A recommended, or instructor permission.

Term Typically Offered: Fall, Spring

Theory and practice of physical and chemical processes used in engineered water and wastewater systems. Adsorption, ion exchange, gas transfer, membrane processes, coagulation, flocculation, sedimentation, filtration, precipitation, disinfection, and stripping. Physical/chemical reactors.
CE 254. Water Quality Management. 3 Units
Prerequisite(s): CE 170 or equivalent, CE 252A recommended, or instructor permission.
Term Typically Offered: Fall, Spring
Examination of pollution sources and effects on water bodies, and the management issues and tools used to protect environmental quality. Topics include point and nonpoint pollution sources, interactions in the environment, Federal and State laws, water quality objectives, beneficial uses, and regulatory mechanisms such as basin plans and total maximum daily loads (TMDLs). Emphasis is on surface water.

CE 255. Transport of Chemicals in Soil Systems. 3 Units
Prerequisite(s): MATH 45. Graduate status.
Term Typically Offered: Fall, Spring
Study of the mechanics of movement of chemicals in soil, including equilibrium and partition models, development of mass transport equations in porous media, analytical solution for one-dimensional transport, lumped parameter transport model (linear reservoir model), transport of reactive and conservative chemicals numerical solutions of transport models, transport in the unsaturated zone and coupled models for saturated and unsaturated zone.

CE 261. Transportation Planning. 3 Units
Prerequisite(s): CE 148 or instructor permission.
Term Typically Offered: Fall only – odd years
Introduction to the complexities of comprehensive intermodal transportation planning. Study of transportation problems, system operating characteristics, alternative modes, and the planning process. Analyzes factors affecting travel behavior and methods of forecasting demand for travel by various modes.

CE 262. Advanced Transportation Facility Design. 3 Units
Prerequisite(s): CE 147 or instructor permission.
Term Typically Offered: Fall only – even years
Advanced study of current topics in highway and mass transportation facility design including safety, curve design, pavement design and drainage facility design. Focuses on current design practice and recent or impending changes in design practice.

CE 263. Traffic Flow Theory. 3 Units
Prerequisite(s): CE 147 or CE 148; ENGR 203 or instructor permission.
Term Typically Offered: Fall only – even years
Study of traffic flow characteristics including flow rate, speed, and density, at both the microscopic and macroscopic levels. Traffic flow analysis using the theoretical methods including capacity analysis, traffic stream models, shockwave analysis, and queuing analysis. Emphasis is on theory with demonstration of practical applications.

CE 265. Analysis and Control of Traffic Systems. 3 Units
Prerequisite(s): CE 147 or CE 148; CE 263 or instructor permission.
Term Typically Offered: Fall only – odd years
Traffic data collection and analysis, practical application of theoretical methods of analysis such as capacity, level of service, and queuing theory. Investigation of traffic control techniques such as actuated signals and signal systems, and study of management techniques for traffic congestion.

CE 266. Advanced Design in Reinforced Concrete. 3 Units
Prerequisite(s): CE 161, CE 163, CE 164.
Term Typically Offered: Spring only – even years
Advanced topics in behavior and design in reinforced concrete. Detailing for seismic response.

CE 267. Structural Systems for Buildings. 3 Units
Prerequisite(s): CE 232 or instructor permission.
Term Typically Offered: Spring only – even years
Analyzes and design of various structural systems for buildings: frames, tubes, shear walls with or without openings and interaction between these types. Secondary effects such as P*, material and geometrical nonlinearities.

CE 268. Pre-stressed Concrete Bridge Design. 3 Units
Prerequisite(s): CE 164 or instructor approval.
Term Typically Offered: Fall only – even years
Behavior and design of short and medium-span prestressed concrete bridges using American Association of State Highway and Transportation Officials (AASHTO) Load Resistance Factor Design (LRFD) specifications. Topics include: bridge types, aesthetics; design process; superstructure load types and live load analysis; limit states and load combinations; prestressed concrete materials; flexural analysis and design; shear analysis and design; and introduction to substructure analysis and design, including seismic design criteria. A team project is required.

CE 269. Pavement Design. 3 Units
Prerequisite(s): CE 147 and CE 171A.
Term Typically Offered: Spring only – even years
Fundamental principles of pavement analysis, design, and evaluation. Topics include pavement materials, mechanics, traffic and environmental loadings, pavement performance, design methods, construction and economic evaluation.

CE 271. Modern Hydrologic Techniques. 3 Units
Prerequisite(s): CE 137 or CE 138 and ENGR 203 or instructor permission.
Term Typically Offered: Spring only – even years
Analyses of hydrologic and meteorologic phenomena by mathematical, statistical, and system methods, linear and non linear, stochastic and parametric hydrology, computer applications in hydrology.

CE 272. Advanced Engineering Hydraulics. 3 Units
Prerequisite(s): CE 137 or equivalent.
Term Typically Offered: Spring only – even years
Steady uniform and non-uniform open channel flows including gradually, rapid and spatially varied flows; analysis of supercritical flow in transition; basic principles of unsteady flows; long wave theory; Saint-Venant Equations and their solutions including method of characteristics, explicit and implicit finite difference numerical methods.

CE 274. Hydrologic Modeling. 3 Units
Prerequisite(s): CE 272 or equivalent; instructor permission.
Term Typically Offered: Spring only – odd years
Theories and structure of hydraulic model components; application of HEC-RAS (River Analysis System) and HEC-HMS (Hydrologic Modeling System) computer programs; emphasis on flood routing methods; dam safety analysis methodology including dam break and dam overtopping cases; application of microcomputers in hydraulics computations.
CE 276. Groundwater Hydrology. 3 Units
Prerequisite(s): CE 137 or instructor permission.
Term Typically Offered: Fall only – even years

Occurrence and movement of groundwater; physical characteristics of aquifers; analysis of steady-state groundwater flow problems by mathematical, digital computer, electrical analog and graphical methods; analysis of unsteady-state problems in confined and unconfined, aquifers; multiple well systems.

CE 280A. Advanced Soil Mechanics and Foundation Engineering I. 3 Units
Prerequisite(s): CE 171A or equivalent.
Term Typically Offered: Fall only – even years

Advanced analyses in soil mechanics and their practical applications in foundation engineering; compressibility of soils, settlement analysis, and tolerable settlement; lateral earth pressures and design of earth retaining structures; bearing capacity of shallow foundations; in-situ soil testing for foundation design; design of deep foundations, including driven piles, drilled shaft foundations, and laterally loaded piles.

CE 280B. Advanced Soil Mechanics and Foundation Engineering II. 3 Units
Prerequisite(s): CE 171A or equivalent.
Term Typically Offered: Fall only – odd years

Advanced analyses in shear strength of cohesionless and cohesive soils, including stress-strain characteristics of soils, total and effective stress analyses; slope stability analyses for natural slopes, fill slopes, earth dams, levees, and methods of slope stabilization; analysis and design of anchored bulkheads, cellular cofferdams, soil nail walls, tieback walls, mechanically stabilized earth walls, and segmental retaining walls.

CE 280C. Geotechnical Modeling. 3 Units
Prerequisite(s): CE 171A
Term Typically Offered: Fall only – even years

Advanced analysis principles and procedures for calculating monotonic and cyclic soil element response effective stress and pore water pressure distributions, dynamic site response, and soil deformations; application to analysis of complex geotechnical engineering systems such as levees, dams, and wharfs. Laboratory time devoted to numerical analysis software and physical element and small scale tests. Lecture two hours. Laboratory three hours.

CE 283. Ground Modification Engineering. 3 Units
Prerequisite(s): CE 171A or equivalent.
Term Typically Offered: Fall, Spring

Principles of soil stabilization and earth reinforcement; mechanical compaction and treatment of difficult soils, including expansive soils, collapsible soils, oversize materials, and compressible fill; prefabricated vertical drains and preloading; dynamic deep compaction; vibro compaction; vibro-replacement; rammed aggregate pier; compaction grouting; jet grouting; slurry grouting; chemical grouting; deep soil mixing; slurry trench walls.

CE 284. Soil Dynamics and Earthquake Engineering. 3 Units
Prerequisite(s): CE 171A or equivalent.
Term Typically Offered: Spring only – odd years

Introduction to vibration theory; wave propagation in soils and dynamic behavior of soils and foundations; dynamic tests; analysis of dynamically loaded foundations; causes of earthquakes; earthquake magnitude and zones; ground motions induced by earthquakes; earthquake-resistant design of foundations and earth dams.

CE 285. Geosynthetics I. 3 Units
Prerequisite(s): CE 171A or instructor permission.
Term Typically Offered: Fall only – even years

Overview of geotextiles, geogrids and geonets; geosynthetic properties and test methods; geosynthetic functions and mechanisms as in separation, roadway and soil reinforcement, filtration, and drainage; applications and design methods; construction, fabrication and installation.

CE 286. Geosynthetics II. 3 Units
Prerequisite(s): CE 171A or instructor permission.
Term Typically Offered: Fall, Spring

Overview of geomembranes, geosynthetic clay liners, and geocomposites. Topics include: geosynthetic properties and test methods; geosynthetic functions and mechanisms as in landfill liners, liquid barriers and carriers, erosion control, drainage, and design and construction methods.

CE 289. Project Management for Civil Engineers. 3 Units
Prerequisite(s): Graduate standing or instructor permission.
Term Typically Offered: Spring only

Theory and practice of project management in civil engineering. Interrelationship of planning, design, and construction. New technologies and techniques used in both US and international architectural/engineering/construction (A/E/C) markets. Topics: Project initiation, early estimates, project budgeting, work plans, design proposals, scheduling, tracking, design coordination, construction, project close-out, team and personal management skills, and quality control.

CE 290D. Stormwater Management. 3 Units
Prerequisite(s): CE 137 and CE 170
Term Typically Offered: Fall, Spring

CE 296H. GIS Applications in Civil Engineering. 3 Units
Prerequisite(s): ENGR 115, CE 9 and CE 137 or CE 147 or CE 171A.
Term Typically Offered: Fall, Spring

Introduction to fundamental concepts of geographic information systems (GIS), methods, and applications in civil engineering. Design and develop GIS-based analytical methods and solutions for civil engineering problems. Lab exercises are used to design and practice GIS applications in civil engineering. This course may be paired with CE 196H.
CE 299. Special Problems. 1 - 3 Units
Term Typically Offered: Fall, Spring

Special problems in graduate research.
Note: Approval of a petition must be obtained from the faculty supervising the work and the Department Graduate Program Coordinator. Letter grade or Credit/No Credit.

Credit/No Credit

CE 500. Culminating Experience. 3 - 6 Units
Prerequisite(s): Advanced to candidacy and permission of the faculty advisor and Department Chair.
Term Typically Offered: Fall, Spring

Successful completion of either: A. Thesis (3-6 units), or B. Project (3-6 units) or C. Directed Study and Examination (3 units). Plan A requires a thesis and is primarily research-orientated. Plan B requires a project report that is primarily application oriented. Plan C requires a detailed literature review or experimental data analysis resulting in a written report plus an examination by three faculty. A public presentation is required for all three plans.