CE 1. Civil Engineering Seminar. 1 Unit
General Education Area/Graduation Requirement: Understanding Personal Development (E)
Term Typically Offered: Fall, Spring

Introduces students to civil engineering as a profession. Topics include the technical disciplines (environmental, geotechnical, structural, transportation, and water resources), the role of civil engineers in planning, constructing and operating infrastructure, and professional responsibilities such as licensure and ethics. Case studies are used to explore both technical and non-technical aspects of civil engineering projects such as design and environmental constraints, constructability, and social and political issues.

CE 4. Engineering Graphics and CAD. 2 Units
General Education Area/Graduation Requirement: Understanding Personal Development (E)
Term Typically Offered: Fall, Spring

In-depth graphic analysis and solution of typical three dimensional space problems by applying the principles of orthogonal projection. Fundamentals of interactive computer aided design and drafting. Lecture one hour; laboratory three hours.

CE 9. Plane and Topographic Surveying. 2 Units
Prerequisite(s): MATH 30 and CE 9L. CE 9L may be taken concurrently. MATH 30 may be taken concurrently. Not currently enrolled in CE 9.
Term Typically Offered: Fall, Spring

Methods for the measurement of distance, direction, angles and elevations. Computational methods for locating points, closing traverses and determining areas and earthwork volumes. Horizontal and vertical curves. Introduction to legal aspects of surveying, geodetic surveys, maps, boundary surveys and new technologies used in surveying. Lecture two hours.

CE 9L. Plane and Topographic Surveying Laboratory. 1 Unit
Prerequisite(s): MATH 30 and CE 9. CE 9 may be taken concurrently. MATH 30 may be taken concurrently. Not currently enrolled in CE 9L.
Term Typically Offered: Fall, Spring, Summer

Laboratory course that supports CE 9. Use of surveying instruments and measurement techniques in field setting. Laboratory three hours.

CE 100. Engineering Geology. 2 Units
Prerequisite(s): ENGR 112; may be taken concurrently.
Term Typically Offered: Fall, Spring

Soil and rock mechanics and their relations to geological features influencing design, construction and maintenance of engineering projects. Lectures and field problems.

CE 101. Computer Applications in Civil Engineering. 3 Units
Prerequisite(s): ENGR 30 and CE 4; CE 4 may be taken concurrently.
Term Typically Offered: Fall, Spring

Development of programming- and algorithm-based problem-solving skills in civil engineering using modern programming and scripting languages and scientific computing programs. Application to numerical methods, data science, and visualization.

CE 130. Water Resources Engineering. 3 Units
Prerequisite(s): CE 1, CE 101, ENGR 115, ENGR 132, CE 130L. CE 130L may be taken concurrently. Not currently enrolled in CE 130.
Term Typically Offered: Fall, Spring

Hydrologic and hydraulic fundamentals which are common to water resources projects; introduction to reservoirs, dams, pipelines, channels, hydraulic machinery, ground water, water rights, statistical analysis, engineering economy applications, and water resources planning.

CE 130L. Hydraulics Laboratory. 1 Unit
Prerequisite(s): CE 101 and CE 130. CE 130 may be taken concurrently. WPJ Score of 70+ or equivalent. Not currently enrolled in CE 130L.
Term Typically Offered: Fall, Spring

Laboratory experiments that support the principles of fluid mechanics to real fluid flow. Laboratory three hours.

CE 131. Hydrology. 3 Units
Prerequisite(s): CE 130 and CE 130L. Not currently enrolled in CE 131.
Term Typically Offered: Fall only

Introduction to surface water hydrology for engineering. Evapotranspiration and infiltration prediction. Precipitation analysis, hydrograph and flood routing applications for civil engineering. Statistical applications in hydrology.

CE 132. Groundwater Engineering. 3 Units
Prerequisite(s): CE 130 and CE 130L. Not currently enrolled in CE 132.
Term Typically Offered: Spring only

CE 133. Design of Urban Water and Sewer Systems. 3 Units
Prerequisite(s): CE 130 and CE 130L. Not currently enrolled in CE 133.
Term Typically Offered: Fall only

Hydraulic design of water distribution and sewerage systems. Computer-assisted pipe network analysis. Analysis of pump systems. Pump station design. Other selected topics.

CE 134. Open Channel Hydraulics. 3 Units
Prerequisite(s): CE 130 and CE 130L. Not currently enrolled in CE 134.
Term Typically Offered: Spring only

Civil engineering design problems in steady, uniform, gradually and rapidly varied open channel flow. Hydraulic analysis in structures, transitions, culverts, weirs and spillways. Channel design including roughness for subcritical and supercritical flow. Prediction of water surface profiles via simulation software.

CE 140. Transportation Engineering. 3 Units
Prerequisite(s): Complete CE 1, CE 9, CE 9L, CE 101, ENGR 115, and CE 140L. CE 140L may be taken concurrently. Not currently enrolled in CE 140.
Term Typically Offered: Fall, Spring

Introduction to the fundamental topics in Transportation Engineering. Focus on roadway geometric design, layout considerations, pavement materials and design, traffic operations and analysis.
CE 140A. Principles of Environmental Engineering. 2 Units
Prerequisite(s): CHEM 1E or CHEM 1A, ENGR 115, CE 1, CE 101, and CE 150L. CE 150L may be taken concurrently. WPJ Score of 70+ or equivalent. Not currently enrolled in CE 150L.
Term Typically Offered: Fall, Spring
Introduction to principles of environmental quality management. Physical and chemical principles affecting environmental quality including equilibrium and kinetics. Water quality parameters, their importance, and natural processes that affect them. Application of thermodynamic principles to environmental systems.

CE 150B. Environmental Engineering Practice. 2 Units
Prerequisite(s): CE 150. Not currently enrolled in CE 150B.
Term Typically Offered: Fall, Spring

CE 150L. Environmental Engineering Laboratory. 1 Unit
Prerequisite(s): CHEM 1E or CHEM 1A, ENGR 115, CE 1, CE 101, and CE 150. CE 150 may be taken concurrently. WPJ Score of 70+ or equivalent. Not currently enrolled in CE 150L.
Term Typically Offered: Fall, Spring
This is the laboratory course that supports CE 150. Activities include water quality testing and computer modeling. Laboratory three hours.

CE 151. Introduction to GIS in Civil Engineering. 3 Units
Prerequisite(s): ENGR 115, CE 9, and either CE 137, CE 147, CE 170A, or CE 171A.
Term Typically Offered: Fall only
Fundamental geographic information system (GIS) concepts; GIS data acquisition and analysis; GIS analytical methods. Lab exercises with GIS software used to introduce students to typical uses of GIS in civil engineering. This course may be paired with the graduate-level course GIS Applications in Civil Engineering. Lecture two hours; lab three hours.

CE 152. Design of Water Quality Control Processes. 3 Units
Prerequisite(s): CE 150B and ENGR 132. Not currently enrolled in CE 152.
Term Typically Offered: Spring only
Analysis and design of selected physical, chemical, and biological facilities for water purification and wastewater treatment. Emphasis is on design based on loading factors and integration of unit processes into treatment systems.

CE 153. Introduction to GIS in Civil Engineering. 3 Units
Prerequisite(s): ENGR 115, CE 1, CE 9, and either CE 137, CE 147, CE 170A, or CE 171A.
Term Typically Offered: Spring only
Further Studies in Area B (B5)
Additional requirements include further studies in Area B (B5).

CE 156. Geoenvironmental Engineering. 3 Units
Prerequisite(s): CE 150B and CE 170; CE 150B may be taken concurrently. Not currently enrolled in CE 156.
Term Typically Offered: Not offered
Further Studies in Area B (B5)
Additional requirements include further studies in Area B (B5).

CE 160. Structural Laboratory. 1 Unit
Prerequisite(s): CE 101 and ENGR 112. WPJ score of 70+ or equivalent. Not currently enrolled in CE 160.
Term Typically Offered: Fall, Spring
This course requires safety training. This course requires personal protective equipment (PPE).
CE 163. Structural Steel Design. 3 Units
Prerequisite(s): CE 160. Not currently enrolled in CE 163.
Term Typically Offered: Fall, Spring

Theory and practice in design of structural steel members and connections using current design specifications. Design of tension and compression members, laterally supported and unsupported beams, beam-columns, and bolted and welded connections.

CE 164. Reinforced Concrete Design. 3 Units
Prerequisite(s): CE 160 and CE 160L. CE 160L may be taken concurrently. Not currently enrolled in CE 164.
Term Typically Offered: Fall

Introduction to reinforced concrete design according to American Concrete Institute (ACI) 318 Building Code, including: design and safety concepts; loads and load path; structural systems; material properties; flexural analysis and design of reinforced concrete beams and one-way slabs; development of reinforcement; serviceability; shear; columns; and other topics.

CE 165. Masonry Design. 3 Units
Prerequisite(s): CE 160. Not currently enrolled in CE 165
Term Typically Offered: Spring only

History of masonry. Masonry materials. Masonry as a structural material. Design of masonry beams, concentrically and eccentrically loaded columns, walls for vertical and lateral loading including effects of wind and seismic forces. Design of a small building for wind and seismic loading including torsional effects.

CE 166. Seismic Behavior of Structures. 3 Units
Prerequisite(s): CE 101, CE 160, and ENGR 110. Not currently enrolled in CE 166
Term Typically Offered: Fall, Spring

Analyzes simple structures’ response to dynamic loads with emphasis on response to earthquake ground motion. Introduction to multi-story buildings dynamics. Modal and approximate analyses of earthquake response. Dynamic analysis and building code procedures.

CE 168. Prestressed Concrete Design. 3 Units
Prerequisite(s): CE 160 and CE 164. CE 164 may be taken concurrently. Not currently enrolled in CE 168.
Term Typically Offered: Fall only – even years

Introduction to prestressed concrete design, focusing on bridges and buildings. Topics include: basic concepts; technology for fabrication and construction; material properties; flexural analysis and design for non-composite and composite beams; development of strands; prestress losses; camber and deflections; shear; and other topics. Design conforming to American Concrete Institute (ACI) 318 Building Code or AASHTO LRFD Bridge Design Specifications is emphasized, as appropriate.

CE 169. Timber Design. 3 Units
Prerequisite(s): CE 160. Not currently enrolled in CE 169.
Term Typically Offered: Fall only

Wood as a structural material. Design of sawn and glulam beams, concentrically and eccentrically loaded columns, shear walls, flexible diaphragms and connections for vertical and lateral loading including effects of wind and seismic forces.

CE 170. Principles of Environmental Engineering. 4 Units
Prerequisite(s): CHEM 1E or CHEM 1A, CE 1A, CE 101, CE 146, ENGR 115; CE 146 may be taken concurrently
Term Typically Offered: Fall, Spring

Introduction to the principles and practices of environmental quality management. Physical and chemical principles affecting environmental quality. Water and air quality parameters, their importance, and natural processes that affect them. Introduction to treatment processes and waste management. Environmental ethics. Lecture three hours. Laboratory three hours.

CE 170C. Soil Mechanics. 3 Units
Prerequisite(s): CE 1, CE 100, CE 101, ENGR 112, and CE 170L. CE 170L may be taken concurrently. Not currently enrolled in CE 170C.
Term Typically Offered: Fall, Spring

Composition and properties of soils; soil classification; soil compaction; soil-water interaction, including permeability and seepage analyses; soil stresses; soil compressibility, consolidation, and settlement analysis; soil shear strength.

CE 170L. Soil Mechanics Laboratory. 1 Unit
Prerequisite(s): Complete CE 1, CE 100, CE 101, ENGR 112, CE 170C. CE 170C may be taken concurrently. WPJ Score of 70+ or equivalent. Not currently enrolled in CE 170L.
Term Typically Offered: Fall, Spring

Laboratory course that supports CE 170C. Activities include soil testing and analysis of geotechnical site investigation data. Laboratory three hours.

CE 171. Soil Mechanics and Foundation Engineering. 3 Units
Prerequisite(s): CE 170 and CE 170L. Not currently enrolled in CE 171.
Term Typically Offered: Spring only

Lateral earth pressures and principles of retaining wall design; slope stability analysis and principles of slope stabilization design; ultimate bearing capacity of soils, allowable bearing pressures and settlement of structures; principles of foundation design including shallow foundations and deep foundations.

CE 175. Geotechnical Earthquake Engineering. 3 Units
Prerequisite(s): CE 170 and CE 170L. Not currently enrolled in CE 175.
Term Typically Offered: Fall only

Introduction to seismology and seismic hazard analysis; determination of building code design loads; prediction of soil-site effects; evaluation of liquefaction triggering, cyclic softening and associated consequences; introduction to mitigation techniques for liquefaction and ground failure hazards.

CE 182. Introduction to GIS in Civil Engineering. 3 Units
Prerequisite(s): ENGR 115, CE 9, CE 9L, and (CE 130 or CE 140 or CE 150 or CE 170). Not currently enrolled in CE 182.
Term Typically Offered: Fall only

Fundamental geographic information system (GIS) concepts; GIS data acquisition and analysis; GIS analytical methods. Lab exercises with GIS software used to introduce students to typical uses of GIS in civil engineering. This course may be paired with the graduate-level course GIS Applications in Civil Engineering. Lecture two hours; laboratory three hours.
CE 190A. Civil Engineering Project Skills. 3 Units
Prerequisite(s): CE 130 or CE 140 or CE 150 or CE 160 or CE 170. WPJ Score of 70+ or equivalent. Not currently enrolled in CE 190A.
General Education Area/Graduation Requirement: GE AREA D
Term Typically Offered: Fall, Spring
Introduction to professional engineering practice through case studies of existing projects, including estimating, scheduling, and specifications. Evaluation of design alternatives for engineering projects using principles of engineering economy and cost benefit analysis. Engineering ethics and professional responsibilities.
Note: This course is intended to be taken in the final year of study before taking CE 191.

CE 191. Senior Project. 3 Units
Prerequisite(s): CE 190
Term Typically Offered: Fall, Spring
Culminating degree requirement. Completion of a conceptual design and evaluation of alternatives under realistic constraints for proposed infrastructure projects. Students work in teams with practicing professionals providing mentoring. Draws upon full educational experience to date. Lecture two hours. Laboratory three hours.
Note: This course must be taken in the final semester.

CE 194. Career Development in Civil Engineering. 1 Unit
Prerequisite(s): Instructor permission.
Term Typically Offered: Fall, Spring
Designed for Civil Engineering students making career decisions. Instruction will include effective career planning strategies and techniques including skill assessments, employment search strategy, goal setting, time management, interview techniques and resume writing. Lecture one hour.
Note: Units earned cannot be used to satisfy major requirements. Cross Listed: ENGR 194, EEE194
Credit/No Credit

CE 195. Fieldwork in Civil Engineering. 1 - 3 Units
Prerequisite(s): Petition approval by supervising faculty member and Department chair.
Term Typically Offered: Fall, Spring
Supervised work experience in civil engineering with public agencies or firms in the industry.
Note: May be repeated for credit.
Credit/No Credit

CE 195A. Professional Practice. 1 - 12 Units
Prerequisite(s): Instructor permission.
Term Typically Offered: Fall, Spring
Supervised employment in a professional engineering or computer science environment. Placement arranged through the College of Engineering and Computer Science.
Note: Requires satisfactory completion of the work assignment and a written report.
Credit/No Credit

CE 196H. Concrete Technology. 3 Units
Prerequisite(s): ENGR 112.
Term Typically Offered: Spring only
History of portland cement, production, hydration, aggregates, supplementary cementitious materials, chemical admixtures, fresh and hardened concrete properties, concrete mixture design, and concrete construction. Introduction to concrete durability, concrete repair, and advances in concrete technology.

CE 199. Special Problems. 1 - 3 Units
Term Typically Offered: Fall, Spring
Individual projects or directed reading.
Note: Open to students judged capable of carrying out individual work. Admission requires departmental approval and sponsorship of a supervising faculty member. Cannot be used as a technical elective in the major. Consult the CE Department for admission procedures and other requirements. May be repeated.

CE 199E. Independent Study Technical Elective. 3 Units
Prerequisite(s): GPA of 2.5 or greater in the upper division courses of the major; grade of ‘B’ or better in the required major course associated with the proposed area of study (CE 130 or CE 140 or CE 150 or CE 160 or CE 170).
Term Typically Offered: Fall, Spring
Individual project, research, or directed reading on an advanced topic.
Note: Open to only those students prepared and capable of carrying out independent work.

CE 231A. Computer Methods of Structural Analysis I. 3 Units
Prerequisite(s): CE 161.
Term Typically Offered: Fall only – even years
Flexibility and stiffness methods of structural analysis are applied to two- and three-dimensional framed structures. Use of computer software to perform analysis is discussed in detail. Techniques of computer modeling are discussed.

CE 231B. Computer Methods of Structural Analysis II. 3 Units
Prerequisite(s): CE 231A or instructor permission.
Term Typically Offered: Spring only – odd years
Continuation of CE 231A with extension of theory to allow for the analysis of a wider variety of structures. Structural analysis software is used for the analysis of three-dimensional structures. Fundamentals of the finite element method and computer modeling with applications to structural problems.

CE 232. Nonlinear Structural Analysis. 3 Units
Prerequisite(s): CE 231A or instructor permission.
Term Typically Offered: Spring only – odd years
Theory and applications of nonlinear structural analysis including geometric and material nonlinear effects. Stability issues and second-order analysis methods in the context of moment amplification effects, member buckling, and the behavior of structural elements and frames undergoing large deformations. Inelastic material behavior and stress resultant plasticity concepts within a line-type element framework. Computer implementation of geometric nonlinear behavior.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisite(s)</th>
<th>Term Typically Offered</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 234</td>
<td>Dynamics and Earthquake Response of Structures</td>
<td>3</td>
<td>CE 170 or equivalent, CE 252A recommended, or instructor permission.</td>
<td>Fall, Spring</td>
<td>Study of the behavior of structures under dynamic loads. Focus on the effects of damping and material nonlinearity. Models include seismic loading and response spectra.</td>
</tr>
<tr>
<td>CE 235</td>
<td>Advanced Steel Design</td>
<td>3</td>
<td>CE 163</td>
<td>Spring only – even years</td>
<td>Advanced design methodology of steel structures using Load and Resistance Factor Design (LRFD). System level behavior, especially from a seismic loading perspective, is integrated into the design of steel components and connections. Other topics include plate girder design, plastic design of indeterminate systems, design of moment frame systems, and design of braced-frame systems.</td>
</tr>
<tr>
<td>CE 250</td>
<td>Systems Analysis of Resources Development</td>
<td>3</td>
<td>CE 250</td>
<td>Spring only – even years</td>
<td>Investigation of resource planning using the ‘systems approach’. Objectives of resource development; basic economic and technologic concepts, and economic factors affecting system design. Consideration of evaluation, institutional constraints, and uncertainty in water resources systems. Familiarization with modern computer techniques. Applications of concepts to air and land resources.</td>
</tr>
<tr>
<td>CE 251</td>
<td>Water Resources Planning</td>
<td>3</td>
<td>CE 250</td>
<td>Fall only – odd years</td>
<td>Application of single and multi-objective planning to the design and operation of water resources projects. Objectives and constraints for water projects, criteria and procedures for evaluation, planning under uncertainty. Application in water development and water quality planning, with case studies.</td>
</tr>
<tr>
<td>CE 252A</td>
<td>Environmental Quality Processes I</td>
<td>3</td>
<td>CE 170 or equivalent</td>
<td>Fall, Spring</td>
<td>Theory and practice of chemical processes affecting water quality. Chemical equilibrium, stoichiometry and kinetics of aqueous chemistry. Acid-base, precipitation-dissolution, oxidation-reduction, and coordination chemistry. Adsorption.</td>
</tr>
<tr>
<td>CE 252C</td>
<td>Environmental Quality Processes III</td>
<td>3</td>
<td>CE 170 or equivalent, CE 252A recommended, or instructor permission.</td>
<td>Fall, Spring</td>
<td>Theory and practice of physical and chemical processes used in engineered water and wastewater systems. Adsorption, ion exchange, gas transfer, membrane processes, coagulation, flocculation, sedimentation, filtration, precipitation, disinfection, and stripping. Physical/chemical reactors.</td>
</tr>
<tr>
<td>CE 254</td>
<td>Water Quality Management</td>
<td>3</td>
<td>CE 170 or equivalent, CE 252A recommended, or instructor permission.</td>
<td>Fall only – even years</td>
<td>Examination of pollution sources and effects on water bodies, and the management issues and tools used to protect environmental quality. Topics include point and nonpoint pollution sources, interactions in the environment, Federal and State laws, water quality objectives, beneficial uses, and regulatory mechanisms such as basin plans and total maximum daily loads (TMDLs). Emphasis is on surface water.</td>
</tr>
<tr>
<td>CE 255</td>
<td>Transport of Chemicals in Soil Systems</td>
<td>3</td>
<td>MATH 45. Graduate status.</td>
<td>Fall, Spring</td>
<td>Study of the mechanics of movement of chemicals in soil, including equilibrium and partition models, development of mass transport equations in porous media, analytical solution for one-dimensional transport, lumped parameter transport model (linear reservoir model), transport of reactive and conservative chemicals numerical solutions of transport models, transport in the unsaturated zone and coupled models for saturated and unsaturated zone.</td>
</tr>
<tr>
<td>CE 261</td>
<td>Transportation Planning</td>
<td>3</td>
<td>CE 148</td>
<td>Fall only – odd years</td>
<td>Introduction to the complexities of comprehensive intermodal transportation planning. Study of transportation problems, system operating characteristics, alternative modes, and the planning process. Analyzes factors affecting travel behavior and methods of forecasting demand for travel by various modes.</td>
</tr>
<tr>
<td>CE 262</td>
<td>Advanced Transportation Facility Design</td>
<td>3</td>
<td>CE 147</td>
<td>Fall only – even years</td>
<td>Advanced study of current topics in highway and mass transportation facility design including safety, curve design, pavement design and drainage facility design. Focuses on current design practice and recent or impending changes in design practice.</td>
</tr>
<tr>
<td>CE 263</td>
<td>Traffic Flow Theory</td>
<td>3</td>
<td>CE 147 or CE 148, ENGR 203 or instructor permission.</td>
<td>Fall only – even years</td>
<td>Study of traffic flow characteristics including flow rate, speed, and density, at both the microscopic and macroscopic levels. Traffic flow analysis using the theoretical methods including capacity analysis, traffic stream models, shockwave analysis, and queuing analysis. Emphasis is on theory with demonstration of practical applications.</td>
</tr>
</tbody>
</table>
CE 265. Analysis and Control of Traffic Systems. 3 Units
Prerequisite(s): CE 147 or CE 148; CE 263 or instructor permission.
Term Typically Offered: Fall only – odd years
Traffic data collection and analysis, practical application of theoretical methods of analysis such as capacity, level of service, and queuing theory. Investigation of traffic control techniques such as actuated signals and signal systems, and study of management techniques for traffic congestion.

CE 266. Advanced Design in Reinforced Concrete. 3 Units
Prerequisite(s): CE 161, CE 163, CE 164.
Term Typically Offered: Spring only – even years
Advanced topics in behavior and design in reinforced concrete. Detailing for seismic response.

CE 267. Structural Systems for Buildings. 3 Units
Prerequisite(s): CE 232 or instructor permission.
Term Typically Offered: Spring only – even years
Analyzes and design of various structural systems for buildings: frames, tubes, shear walls with or without openings and interaction between these types. Secondary effects such as P^p, material and geometrical nonlinearities.

CE 268. Pre-stressed Concrete Bridge Design. 3 Units
Prerequisite(s): CE 164 or instructor approval.
Term Typically Offered: Fall only – even years
Behavior and design of short and medium-span prestressed concrete bridges using American Association of State Highway and Transportation Officials (AASHTO) Load Resistance Factor Design (LRFD) specifications. Topics include: bridge types, aesthetics; design process; superstructure load types and live load analysis; limit states and load combinations; prestressed concrete materials; flexural analysis and design; shear analysis and design; and introduction to substructure analysis and design, including seismic design criteria. A team project is required.

CE 269. Pavement Design. 3 Units
Prerequisite(s): CE 147 and CE 171A.
Term Typically Offered: Spring only – even years
Fundamental principles of pavement analysis, design, and evaluation. Topics include pavement materials, mechanics, traffic and environmental loadings, pavement performance, design methods, construction and economic evaluation.

CE 271. Modern Hydrologic Techniques. 3 Units
Prerequisite(s): CE 137 or CE 138 and ENGR 203 or instructor permission.
Term Typically Offered: Spring only – even years
Analyses of hydrologic and meteorologic phenomena by mathematical, statistical, and system methods, linear and non-linear, stochastic and parametric hydrology, computer applications in hydrology.

CE 272. Advanced Engineering Hydraulics. 3 Units
Prerequisite(s): CE 137 or equivalent.
Term Typically Offered: Spring only – even years
Steady uniform and non-uniform open channel flows including gradually, rapid and spatially varied flows; analysis of supercritical flow in transition; basic principles of unsteady flows; long wave theory; Saint-Venant Equations and their solutions including method of characteristics, explicit and implicit finite difference numerical methods.

CE 274. Hydrologic Modeling. 3 Units
Prerequisite(s): CE 272 or equivalent; instructor permission.
Term Typically Offered: Spring only – odd years
Theories and structure of hydraulic model components; application of HEC-RAS (River Analysis System) and HEC-HMS (Hydrologic Modeling System) computer programs; emphasis on flood routing methods; dam safety analysis methodology including dam break and dam overturning cases; application of microcomputers in hydraulics computations.

CE 276. Groundwater Hydrology. 3 Units
Prerequisite(s): CE 137 or instructor permission.
Term Typically Offered: Fall only – even years
Occurrence and movement of groundwater; physical characteristics of aquifers; analysis of steady-state groundwater flow problems by mathematical, digital computer, electrical analog and graphical methods; analysis of unsteady-state problems in confined and unconfined, aquifers; multiple well systems.

CE 280A. Advanced Soil Mechanics and Foundation Engineering I. 3 Units
Prerequisite(s): CE 171A or equivalent.
Term Typically Offered: Fall only – even years
Advanced analyses in soil mechanics and their practical applications in foundation engineering; compressibility of soils, settlement analysis, and tolerable settlement; lateral earth pressures and design of earth retaining structures; bearing capacity of shallow foundations; in-situ soil testing for foundation design; design of deep foundations, including driven piles, drilled shaft foundations, and laterally loaded piles.

CE 280B. Advanced Soil Mechanics and Foundation Engineering II. 3 Units
Prerequisite(s): CE 171A or equivalent.
Term Typically Offered: Fall only – odd years
Advanced analyses in shear strength of cohesionless and cohesive soils, including stress-strain characteristics of soils, total and effective stress analyses; slope stability analyses for natural slopes, fill slopes, earth dams, levees, and methods of slope stabilization; analysis and design of anchored bulkheads, cellular cofferdams, soil nail walls, tieback walls, mechanically stabilized earth walls, and segmental retaining walls.

CE 280C. Geotechnical Modeling. 3 Units
Prerequisite(s): CE 171A
Term Typically Offered: Fall only – even years
Advanced analysis principles and procedures for calculating monotonic and cyclic soil element response effective stress and pore water pressure distributions, dynamic site response, and soil deformations; application to analysis of complex geotechnical engineering systems such as levees, dams, and wharfs. Laboratory time devoted to numerical analysis software and physical element and small scale tests. Lecture two hours. Laboratory three hours.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisite(s)</th>
<th>Term Typically Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 283</td>
<td>Ground Modification Engineering.</td>
<td>3</td>
<td>CE 171A or equivalent.</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td>CE 284</td>
<td>Soil Dynamics and Earthquake Engineering.</td>
<td>3</td>
<td>CE 171A or equivalent.</td>
<td>Spring only – odd years</td>
</tr>
<tr>
<td>CE 285</td>
<td>Geosynthetics I.</td>
<td>3</td>
<td>CE 171A or instructor permission.</td>
<td>Fall only – even years</td>
</tr>
<tr>
<td>CE 286</td>
<td>Geosynthetics II.</td>
<td>3</td>
<td>CE 171A or instructor permission.</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td>CE 289</td>
<td>Project Management for Civil Engineers.</td>
<td>3</td>
<td>Graduate standing or instructor permission.</td>
<td>Spring only</td>
</tr>
<tr>
<td>CE 296D</td>
<td>Stormwater Management.</td>
<td>3</td>
<td>CE 137 and CE 170</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td>CE 296H</td>
<td>GIS Applications in Civil Engineering.</td>
<td>3</td>
<td>ENGR 115, CE 9 and CE 137 or CE 147 or CE 171A.</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td>CE 299</td>
<td>Special Problems.</td>
<td>1 - 3</td>
<td>Approval of a petition must be obtained from the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>faculty supervising the work and the Department</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Graduate Program Coordinator.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Credit/No Credit</td>
<td></td>
</tr>
<tr>
<td>CE 500</td>
<td>Culminating Experience.</td>
<td>3 - 6</td>
<td>Successful completion of either: A. Thesis (3-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>units), or B. Project (3-6 units) or C. Directed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study and Examination (3 units). Plan A requires</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a thesis and is primarily research-orientated. Plan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B requires a project report that is primarily</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>application oriented. Plan C requires a detailed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>literature review or experimental data analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>resulting in a written report plus an examination</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>by three faculty. A public presentation is required</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>for all three plans.</td>
<td></td>
</tr>
<tr>
<td>CE 500</td>
<td>Culminating Experience.</td>
<td>3 - 6</td>
<td>Successful completion of either: A. Thesis (3-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>units), or B. Project (3-6 units) or C. Directed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study and Examination (3 units). Plan A requires</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a thesis and is primarily research-orientated. Plan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B requires a project report that is primarily</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>application oriented. Plan C requires a detailed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>literature review or experimental data analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>resulting in a written report plus an examination</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>by three faculty. A public presentation is required</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>for all three plans.</td>
<td></td>
</tr>
</tbody>
</table>