CIVIL ENGINEERING (CE)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>General Education Area/Graduation Requirement</th>
<th>Term Typically Offered</th>
<th>Prerequisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 1</td>
<td>Civil Engineering Seminar.</td>
<td>1 Unit</td>
<td>Understanding, Personal Development (E)</td>
<td>Fall, Spring</td>
<td></td>
</tr>
<tr>
<td>CE 4</td>
<td>Engineering Graphics and CAD.</td>
<td>2 Units</td>
<td>Understanding, Personal Development (E)</td>
<td>Fall, Spring</td>
<td></td>
</tr>
<tr>
<td>CE 9</td>
<td>Plane and Topographic Surveying.</td>
<td>2 Units</td>
<td></td>
<td>Fall, Spring</td>
<td>MATH 30 and CE 9L. CE 9L may be taken concurrently. Not currently enrolled in CE 9.</td>
</tr>
<tr>
<td>CE 100</td>
<td>Engineering Geology.</td>
<td>2 Units</td>
<td></td>
<td>Fall, Spring</td>
<td>ENGR 112; may be taken concurrently.</td>
</tr>
<tr>
<td>CE 101</td>
<td>Computer Applications in Civil Engineering.</td>
<td>3 Units</td>
<td></td>
<td>Fall, Spring</td>
<td>ENGR 30 and CE 4; CE 4 may be taken concurrently.</td>
</tr>
<tr>
<td>CE 130</td>
<td>Water Resources Engineering.</td>
<td>3 Units</td>
<td></td>
<td>Fall, Spring</td>
<td>MATH 30 and CE 9L. CE 9L may be taken concurrently. CE 130L may be taken concurrently. Not currently enrolled in CE 130.</td>
</tr>
<tr>
<td>CE 130L</td>
<td>Hydraulics Laboratory.</td>
<td>1 Unit</td>
<td></td>
<td>Fall, Spring</td>
<td>WPJ Score of 70+ or equivalent. Not currently enrolled in CE 130L.</td>
</tr>
<tr>
<td>CE 131</td>
<td>Hydrology.</td>
<td>3 Units</td>
<td></td>
<td>Fall only</td>
<td>CE 130 and CE 130L. Not currently enrolled in CE 131.</td>
</tr>
<tr>
<td>CE 132</td>
<td>Groundwater Engineering.</td>
<td>3 Units</td>
<td></td>
<td>Fall only</td>
<td>CE 130 and CE 130L. Not currently enrolled in CE 132.</td>
</tr>
<tr>
<td>CE 133</td>
<td>Design of Urban Water and Sewer Systems.</td>
<td>3 Units</td>
<td></td>
<td>Fall only</td>
<td>CE 130 and CE 130L. Not currently enrolled in CE 133.</td>
</tr>
<tr>
<td>CE 134</td>
<td>Open Channel Hydraulics.</td>
<td>3 Units</td>
<td></td>
<td>Spring only</td>
<td>CE 130 and CE 130L. Not currently enrolled in CE 134.</td>
</tr>
<tr>
<td>CE 140</td>
<td>Transportation Engineering.</td>
<td>3 Units</td>
<td></td>
<td>Fall, Spring</td>
<td>Complete CE 1, CE 9, CE 9L, CE 101, ENGR 115, and CE 140L. CE 140L may be taken concurrently. Not currently enrolled in CE 140.</td>
</tr>
</tbody>
</table>

Introduces students to civil engineering as a profession. Topics include the technical disciplines (environmental, geotechnical, structural, transportation, and water resources), the role of civil engineers in planning, constructing and operating infrastructure, and professional responsibilities such as licensure and ethics. Case studies are used to explore both technical and nontechnical aspects of civil engineering projects such as design and environmental constraints, constructability, and social and political issues.

In-depth graphic analysis and solution of typical three dimensional space problems by applying the principles of orthogonal projection. Fundamentals of interactive computer aided design and drafting. Lecture one hour; laboratory three hours.

Methods for the measurement of distance, direction, angles and elevations. Computational methods for locating points, closing traverses and determining areas and earthwork volumes. Horizontal and vertical curves. Introduction to legal aspects of surveying, geodetic surveys, maps, boundary surveys and new technologies used in surveying. Lecture two hours.

Laboratory experiments relating the principles of fluid mechanics to real fluid flow. Laboratory three hours.

Hydrologic and hydraulic fundamentals which are common to water resources projects; introduction to reservoirs, dams, pipelines, channels, hydraulic machinery, ground water, water rights, statistical analysis, engineering economy applications, and water resources planning.

Laboratory experiments relating the principles of fluid mechanics to real fluid flow. Laboratory three hours.

Introduction to surface water hydrology for engineering. Evapotranspiration and infiltration prediction. Precipitation analysis, hydrograph and flood routing applications for civil engineering. Statistical applications in hydrology.

Hydraulic design of water distribution and sewerage systems. Computer-assisted pipe network analysis. Analysis of pump systems. Pump station design. Other selected topics.

Civil engineering design problems in steady, uniform, gradually and rapidly varied open channel flow. Hydraulic analysis in structures, transitions, culverts, weirs and spillways. Channel design including roughness for subcritical and supercritical flow. Prediction of water surface profiles via simulation software.

Introduction to the fundamental topics in Transportation Engineering. Focus on roadway geometric design, layout considerations, pavement materials and design, traffic operations and analysis.
CE 140L. Transportation Engineering Laboratory. 1 Unit
Prerequisite(s): Complete CE 1, CE 9, CE 9L, CE 101, ENGR 115, and CE 140. CE 140 may be taken concurrently. WPJ Score of 70+ or equivalent. Not currently enrolled in CE 140L.
Term Typically Offered: Fall, Spring
Laboratory course that supports CE 140. Activities include speed survey and safety assessment, analysis of freeway level of service, analysis of intersection delay and level of service, roadway geometry design, and pavement design using field measurements, online datasets, and state-of-the-practice software. Laboratory three hours.

Note: This course requires safety training. This course requires personal protective equipment (PPE).

CE 141. Traffic Analysis and Design. 3 Units
Prerequisite(s): CE 140 and CE 140L. Not currently enrolled in CE 141.
Term Typically Offered: Fall only
Introduction to the fundamental principles of traffic operations, traffic data collection methods, intersection control, signal design and analysis techniques. Methods and software for designing and optimizing signalized and unsignalized intersection operation.

CE 142. Transportation Systems. 3 Units
Prerequisite(s): CE 140. Not currently enrolled in CE 142.
Term Typically Offered: Fall only
Transportation systems evaluation and management. Focus on transportation planning methods, including data analysis, estimation of future demand, evaluation of travel demand impacts on existing systems, and transportation system decision-making.

CE 150. Principles of Environmental Engineering. 2 Units
Prerequisite(s): CHEM 1E or CHEM 1A, ENGR 115, CE 1, CE 101, and CE 150L. CE 150L may be taken concurrently. CE 101 may be taken concurrently. Not currently enrolled in CE 150.
Term Typically Offered: Fall, Spring
Introduction to principles of environmental quality management. Physical and chemical principles affecting environmental quality including equilibrium and kinetics. Water quality parameters, their importance, and natural processes that affect them. Application of thermodynamic principles to environmental systems.

CE 150L. Environmental Engineering Laboratory. 1 Unit
Prerequisite(s): CHEM 1E or CHEM 1A, ENGR 115, CE 1, CE 101, and CE 150. CE 150 may be taken concurrently. CE 101 may be taken concurrently. WPJ Score of 70+ or equivalent. Not currently enrolled in CE 150L.
Term Typically Offered: Fall, Spring
This is the laboratory course that supports CE 150. Activities include water quality testing and computer modeling. Laboratory three hours.

CE 151. Environmental Engineering Practice. 2 Units
Prerequisite(s): CE 150. Not currently enrolled in CE 151.
Term Typically Offered: Fall, Spring

CE 153. Design of Water Quality Control Processes. 3 Units
Prerequisite(s): CE 150B and ENGR 132. Not currently enrolled in CE 153.
Term Typically Offered: Spring only
Analysis and design of selected physical, chemical, and biological facilities for water purification and wastewater treatment. Emphasis is on design based on loading factors and integration of unit processes into treatment systems.

CE 156. Geoenvironmental Engineering. 3 Units
Prerequisite(s): CE 150B and CE 170; CE 150B may be taken concurrently. Not currently enrolled in CE 156.
Term Typically Offered: Not offered
Equilibrium distribution of contaminants among air, water and solid phases of soil systems; analysis and modeling of soil vapor extraction (SVE), pump and treat, and soil washing systems; movement of gasses in landfills; infiltration through landfill cover; geosynthetic liner systems; hazardous waste containment systems.

CE 160. Introduction to Structural Analysis. 3 Units
Prerequisite(s): CE 1, CE 101, ENGR 112, and (MATH 35 or MATH 100).
Not currently enrolled in CE 160.
General Education Area/Graduation Requirement: Further Studies in Area B (B5)
Term Typically Offered: Fall, Spring
Analysis of statically determinate and indeterminate beams, frames, and trusses. Includes energy principles, flexibility and stiffness analyses, and influence lines. Computers are used to aid in the solution of complex structural problems.

CE 160L. Structural Laboratory. 1 Unit
Prerequisite(s): CE 101 and ENGR 112. WPJ score of 70+ or equivalent.
Not currently enrolled in CE 160L.
General Education Area/Graduation Requirement: Further Studies in Area B (B5)
Term Typically Offered: Fall, Spring
Introduction to the principles of structural analysis and design by testing of structural elements. Experimental verification of the assumptions of strength of materials. Introduction to laboratory techniques. Laboratory three hours.

Note: This course requires safety training. This course requires personal protective equipment (PPE).

CE 163. Structural Steel Design. 3 Units
Prerequisite(s): CE 160. Not currently enrolled in CE 163.
Term Typically Offered: Fall, Spring
Theory and practice in design of structural steel members and connections using current design specifications. Design of tension and compression members, laterally supported and unsupported beams, beam-columns, and bolted and welded connections.

CE 164. Reinforced Concrete Design. 3 Units
Prerequisite(s): CE 160 and CE 160L. CE 160L may be taken concurrently. Not currently enrolled in CE 164.
Term Typically Offered: Fall, Spring
Introduction to reinforced concrete design according to American Concrete Institute (ACI) 318 Building Code, including: design and safety concepts; loads and load path; structural systems; material properties; flexural analysis and design of reinforced concrete beams and one-way slabs; development of reinforcement; serviceability; shear; columns; and other topics.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisite(s)</th>
<th>Term Typically Offered</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 165</td>
<td>Masonry Design</td>
<td>3</td>
<td>CE 160. Not currently enrolled in CE 165</td>
<td>Spring only</td>
<td>History of masonry. Masonry materials. Masonry as a structural material. Design of masonry beams, concentrically and eccentrically loaded columns, walls for vertical and lateral loading including effects of wind and seismic forces. Design of a small building for wind and seismic loading including torsional effects.</td>
</tr>
<tr>
<td>CE 166</td>
<td>Seismic Behavior of Structures</td>
<td>3</td>
<td>CE 101, CE 160, and ENGR 110. Not currently enrolled in CE 166</td>
<td>Fall</td>
<td>Analyzes simple structures’ response to dynamic loads with emphasis on response to earthquake ground motion. Introduction to multi-story buildings dynamics. Modal and approximate analyses of earthquake response. Dynamic analysis and building code procedures.</td>
</tr>
<tr>
<td>CE 168</td>
<td>Prestressed Concrete Design</td>
<td>3</td>
<td>CE 160 and CE 164. CE 164 may be taken concurrently. Not currently enrolled in CE 168.</td>
<td>Fall only – even years</td>
<td>Introduction to prestressed concrete design, focusing on bridges and buildings. Topics include: basic concepts; technology for fabrication and construction; material properties; flexural analysis and design for non-composite and composite beams; development of strands; prestress losses; camber and deflections; shear; and other topics. Design conforming to American Concrete Institute (ACI) 318 Building Code or AASHTO LRFD Bridge Design Specifications is emphasized, as appropriate.</td>
</tr>
<tr>
<td>CE 169</td>
<td>Timber Design</td>
<td>3</td>
<td>CE 160. Not currently enrolled in CE 169.</td>
<td>Fall only</td>
<td>Wood as a structural material. Design of sawn and glulam beams, concentrically and eccentrically loaded columns, shear walls, flexible diaphragms and connections for vertical and lateral loading including effects of wind and seismic forces.</td>
</tr>
<tr>
<td>CE 170</td>
<td>Soil Mechanics</td>
<td>3</td>
<td>CE 1, CE 100, CE 101, ENGR 112, and CE 170L. CE 170L may be taken concurrently. Not currently enrolled in CE 170.</td>
<td>Fall</td>
<td>Composition and properties of soils; soil classification; soil compaction; soil-water interaction, including permeability and seepage analyses; soil stresses; soil compressibility, consolidation, and settlement analysis; soil shear strength.</td>
</tr>
<tr>
<td>CE 170L</td>
<td>Soil Mechanics Laboratory</td>
<td>1</td>
<td>Complete CE 1, CE 100, CE 101, ENGR 112, CE 170C. CE 170C may be taken concurrently. WPJ Score of 70+ or equivalent. Not currently enrolled in CE 170L.</td>
<td>Fall, Spring</td>
<td>Laboratory course that supports CE 170C. Activities include soil testing and analysis of geotechnical site investigation data. Laboratory three hours.</td>
</tr>
<tr>
<td>CE 171</td>
<td>Soil Mechanics and Foundation Engineering</td>
<td>3</td>
<td>CE 170 and CE 170L. Not currently enrolled in CE 171.</td>
<td>Spring only</td>
<td>Lateral earth pressures and principles of retaining wall design; slope stability analysis and principles of slope stabilization design; ultimate bearing capacity of soils, allowable bearing pressures and settlement of structures; principles of foundation design including shallow foundations and deep foundations.</td>
</tr>
<tr>
<td>CE 175</td>
<td>Geotechnical Earthquake Engineering</td>
<td>3</td>
<td>CE 170 and CE 170L. Not currently enrolled in CE 175.</td>
<td>Fall only</td>
<td>Introduction to seismology and seismic hazard analysis; determination of building code design loads; prediction of soil-site effects; evaluation of liquefaction triggering, cyclic softening and associated consequences; introduction to mitigation techniques for liquefaction and ground failure hazards.</td>
</tr>
<tr>
<td>CE 182</td>
<td>Introduction to GIS in Civil Engineering</td>
<td>3</td>
<td>ENGR 115, CE 9, CE 9L, and (CE 130 or CE 140 or CE 150 or CE 170). Not currently enrolled in CE 182.</td>
<td>Fall only</td>
<td>Fundamental geographic information system (GIS) concepts; GIS data acquisition and analysis; GIS analytical methods. Lab exercises with GIS software used to introduce students to typical uses of GIS in civil engineering. This course may be paired with the graduate-level course GIS Applications in Civil Engineering. Lecture two hours; laboratory three hours.</td>
</tr>
<tr>
<td>CE 190</td>
<td>Civil Engineering Project Skills</td>
<td>3</td>
<td>CE 130 or CE 140 or CE 150 or CE 160 or CE 170. WPJ Score of 70+ or equivalent. Not currently enrolled in CE 190.</td>
<td>Fall, Spring</td>
<td>Introduction to professional engineering practice through case studies of existing projects, including estimating, scheduling, and specifications. Evaluation of design alternatives for engineering projects using principles of engineering economy and cost benefit analysis. Engineering ethics and professional responsibilities. Note: This course is intended to be taken in the final year of study before taking CE 191.</td>
</tr>
<tr>
<td>CE 191</td>
<td>Senior Project</td>
<td>3</td>
<td>CE 190. Not currently enrolled in CE 191.</td>
<td>Fall, Spring</td>
<td>Culminating degree requirement. Completion of a conceptual design and evaluation of alternatives under realistic constraints for proposed infrastructure projects. Students work in teams with practicing professionals providing mentoring. Draws upon full educational experience to date. Lecture two hours. Laboratory three hours. Note: This course must be taken in the final semester.</td>
</tr>
</tbody>
</table>
CE 194. Career Development in Civil Engineering. 1 Unit
Prerequisite(s): Instructor permission.
Term Typically Offered: Fall, Spring

Designed for Civil Engineering students making career decisions. Instruction will include effective career planning strategies and techniques including skill assessments, employment search strategy, goal setting, time management, interview techniques and resume writing. Lecture one hour.

Note: Units earned cannot be used to satisfy major requirements. Cross Listed: ENGR 194, EEE194

Credit/No Credit

CE 195. Fieldwork in Civil Engineering. 1 - 3 Units
Prerequisite(s): Petition approval by supervising faculty member and Department chair.
Term Typically Offered: Fall, Spring

Supervised work experience in civil engineering with public agencies or firms in the industry.

Note: May be repeated for credit.

Credit/No Credit

CE 195A. Professional Practice. 1 - 12 Units
Prerequisite(s): Instructor permission.
Term Typically Offered: Fall, Spring

Supervised employment in a professional engineering or computer science environment. Placement arranged through the College of Engineering and Computer Science.

Note: Requires satisfactory completion of the work assignment and a written report.

Credit/No Credit

CE 196B. Stormwater Management. 3 Units
Prerequisite(s): CE 150, CE 150L, CE 130, CE 130L
Term Typically Offered: Spring only

CE 196H. Concrete Technology. 3 Units
Prerequisite(s): ENGR 112.
Term Typically Offered: Spring only

History of portland cement, production, hydration, aggregates, supplementary cementitious materials, chemical admixtures, fresh and hardened concrete properties, concrete mixture design, and concrete construction. Introduction to concrete durability, concrete repair, and advances in concrete technology.

CE 196I. Geometric Design of Highways. 3 Units
Prerequisite(s): CE140, CE 140L
Term Typically Offered: Fall, Spring

Theory and practice of the principles of geometric design of highways and roads focusing on designing visual aspects of highways, highway classification, design controls and criteria, design elements, safety, vertical and horizontal alignment, cross section, intersections, and interchanges. Emphasis on the latest Federal and California design standards and tools, methods, and practices.

CE 199. Special Problems. 1 - 3 Units
Term Typically Offered: Fall, Spring

Individual projects or directed reading.

Note: Open to students judged capable of carrying out individual work. Admission requires departmental approval and sponsorship of a supervising faculty member. Cannot be used as a technical elective in the major. Consult the CE Department for admission procedures and other requirements. May be repeated.

CE 199E. Independent Study Technical Elective. 3 Units
Prerequisite(s): GPA of 2.5 or greater in the upper division courses of the major; grade of "B" or better in the required major course associated with the proposed area of study (CE 130 or CE 140 or CE 150 or CE 160 or CE 170).

Term Typically Offered: Fall, Spring

Individual project, research, or directed reading on an advanced topic.

Note: Open to only those students prepared and capable of carrying out independent work.

CE 200. Civil Engineering Professional Writing. 3 Units
Term Typically Offered: Fall, Spring

Writing workshop course designed to immerse graduate students in the discourse of civil engineering. Instruction and practice in the writing process, professional writing styles used in the discipline, and editing. Multiple writing assignments totaling a minimum of 5000 words will be required.

CE 230. Water Resources Planning. 3 Units
Prerequisite(s): CE 281 or instructor permission.
Term Typically Offered: Fall only – odd years

Application of single and multi-objective planning to the design and operation of water resources projects. Objectives and constraints for water projects, criteria and procedures for evaluation, planning under uncertainty. Application in water development and water quality planning, with case studies.

CE 231. Hydrometeorology. 3 Units
Prerequisite(s): CE 130 or CE 131 and ENGR 115.
Term Typically Offered: Spring only – odd years

Analyses of hydrologic processes closely linked to the atmosphere: evaporation, evapotranspiration, precipitation, and snowmelt. Penman and Penman-Montieth evaporation models, the eddy covariance method for land-atmosphere vapor and energy fluxes, atmospheric rivers and their impact on California water resources.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
<th>Prerequisite(s)</th>
<th>Term Typically Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 232</td>
<td>Groundwater Hydrology</td>
<td>3</td>
<td>CE 130 or instructor permission.</td>
<td>Fall only – even years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Occurrence and movement of groundwater; physical characteristics of aquifers; analysis of steady-state groundwater flow problems by mathematical, digital computer, electrical analog and graphical methods; analysis of unsteady-state problems in confined and unconfined, aquifers; multiple well systems.</td>
<td></td>
</tr>
<tr>
<td>CE 234</td>
<td>Advanced Engineering Hydraulics</td>
<td>3</td>
<td>CE 130 or equivalent, or instructor approval.</td>
<td>Spring only – even years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Steady uniform and non-uniform open channel flows including gradually, rapid and spatially varied flows; analysis of supercritical flow in transition; basic principles of unsteady flows; long wave theory; Saint-Venant Equations and their solutions including method of characteristics, explicit and implicit finite difference numerical methods.</td>
<td></td>
</tr>
<tr>
<td>CE 235</td>
<td>Hydrologic Modeling</td>
<td>3</td>
<td>CE 234 or equivalent; instructor permission.</td>
<td>Spring only – odd years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theories and structure of hydraulic model components; application of HEC-RAS (River Analysis System) and HEC-HMS (Hydrologic Modeling System) computer programs; emphasis on flood routing methods; dam safety analysis methodology including dam break and dam overtopping cases; application of microcomputers in hydraulics computations.</td>
<td></td>
</tr>
<tr>
<td>CE 241</td>
<td>Analysis and Control of Traffic Systems</td>
<td>3</td>
<td>CE 140 or CE 142; CE 243 or instructor permission.</td>
<td>Spring only – odd years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Traffic data collection and analysis, practical application of theoretical methods of analysis such as capacity, level of service, and queuing theory. Investigation of traffic control techniques such as actuated signals and signal systems, and study of management techniques for traffic congestion.</td>
<td></td>
</tr>
<tr>
<td>CE 242</td>
<td>Transportation Planning</td>
<td>3</td>
<td>CE 142 or instructor permission.</td>
<td>Fall only – odd years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Introduction to the complexities of comprehensive intermodal transportation planning. Study of transportation problems, system operating characteristics, alternative modes, and the planning process. Analyzes factors affecting travel behavior and methods of forecasting demand for travel by various modes.</td>
<td></td>
</tr>
<tr>
<td>CE 243</td>
<td>Traffic Flow Theory</td>
<td>3</td>
<td>CE 140 or CE 142; ENGR 203 or instructor permission.</td>
<td>Fall only – even years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study of traffic flow characteristics including flow rate, speed, and density, at both the microscopic and macroscopic levels. Traffic flow analysis using the theoretical methods including capacity analysis, traffic stream models, shockwave analysis, and queueing analysis. Emphasis is on theory with demonstration of practical applications.</td>
<td></td>
</tr>
<tr>
<td>CE 244</td>
<td>Advanced Transportation Facility Design</td>
<td>3</td>
<td>CE 140 or instructor permission.</td>
<td>Fall only – odd years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Advanced study of current topics in highway and mass transportation facility design including safety, curve design, pavement design and drainage facility design. Focuses on current design practice and recent or impending changes in design practice.</td>
<td></td>
</tr>
<tr>
<td>CE 245</td>
<td>Pavement Design</td>
<td>3</td>
<td>CE 140 and CE 170.</td>
<td>Spring only – even years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fundamentals of pavement analysis, design, and evaluation. Topics include pavement materials, mechanics, traffic and environmental loadings, pavement performance, design methods, construction and economic evaluation.</td>
<td></td>
</tr>
<tr>
<td>CE 251</td>
<td>Environmental Quality Processes I</td>
<td>3</td>
<td>CE 150 and 150L, or equivalent.</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td>CE 252</td>
<td>Environmental Quality Processes II</td>
<td>3</td>
<td>CE 150, 150L, and 151. CE 251 recommended, or instructor permission.</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td>CE 253</td>
<td>Environmental Quality Processes III</td>
<td>3</td>
<td>CE 150, 150L, and 151. CE 251 recommended.</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory and practice of physical and chemical processes used in engineered water and wastewater systems. Adsorption, ion exchange, gas transfer, membrane processes, coagulation, flocculation, sedimentation, filtration, precipitation, disinfection, and stripping. Physical/chemical reactors.</td>
<td></td>
</tr>
<tr>
<td>CE 254</td>
<td>Water Quality Management</td>
<td>3</td>
<td>CE 170 or equivalent, CE 252A recommended, or instructor permission.</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Examination of pollution sources and effects on water bodies, and the management issues and tools used to protect environmental quality. Topics include point and nonpoint pollution sources, interactions in the environment, Federal and State laws, water quality objectives, beneficial uses, and regulatory mechanisms such as basin plans and total maximum daily loads (TMDLs). Emphasis is on surface water.</td>
<td></td>
</tr>
</tbody>
</table>
CE 255. Transport of Chemicals in Soil Systems. 3 Units
Prerequisite(s): MATH 45. Graduate status.
Term Typically Offered: Fall, Spring

Study of the mechanics of movement of chemicals in soil, including equilibrium and partition models, development of mass transport equations in porous media, analytical solution for one-dimensional transport, lumped parameter transport model (linear reservoir model), transport of reactive and conservative chemicals numerical solutions of transport models, transport in the unsaturated zone and coupled models for saturated and unsaturated zone.

CE 260. Matrix Structural Analysis. 3 Units
Term Typically Offered: Fall only – even years

Flexibility and stiffness methods of structural analysis are applied to two- and three-dimensional framed structures. Use of computer software to perform analysis is discussed in detail. Techniques of computer modeling are discussed.

CE 261. Finite Element Analysis. 3 Units
Prerequisite(s): CE 260 or instructor permission.
Term Typically Offered: Spring only – odd years

Continuation of CE 260 with extension of theory to allow for the analysis of a wider variety of structures. Structural analysis software is used for the analysis of three-dimensional structures. Fundamentals of the finite element method and computer modeling with applications to structural problems.

CE 262. Nonlinear Structural Analysis. 3 Units
Prerequisite(s): CE 260
Term Typically Offered: Spring only – odd years

Theory and applications of nonlinear structural analysis including geometric and material nonlinear effects. Stability issues and second-order analysis methods are discussed in the context of moment amplification effects, member buckling, and the behavior of structural elements and frames undergoing large deformations. Inelastic material behavior and stress resultant plasticity concepts within a line-type element framework. Computer implementation of geometric nonlinear behavior.

CE 263. Advanced Steel Design. 3 Units
Prerequisite(s): CE 163 or instructor permission
Term Typically Offered: Spring only – even years

Advanced design methodology of steel structures using Load and Resistance Factor Design (LRFD). System level behavior, especially from a seismic loading perspective, is integrated into the design of steel components and connections. Other topics include plate girder design, plastic design of indeterminate systems, design of moment frame systems, and design of braced-frame systems.

CE 264. Advanced Design in Reinforced Concrete. 3 Units
Prerequisite(s): CE 160, CE 163, CE 164.
Term Typically Offered: Spring only – even years

Advanced topics in behavior and design in reinforced concrete. Detailing for seismic response.

CE 265. Design of Steel Structures. 3 Units
Prerequisite(s): CE 263 or instructor permission.
Term Typically Offered: Fall only – odd years

Design and behavior of steel structures with a review of load and resistance factor design (LRFD), yield line theory, torsion, stress analysis of members, and plastic analysis for columns. Design of trusses, beams, and connections, and seismic design.

CE 266. Dynamics and Earthquake Response of Structures. 3 Units
Prerequisite(s): CE 161 or instructor permission
Term Typically Offered: Fall only – odd years

Response of structures modeled as single-degree systems to harmonic, periodic, and arbitrary excitation and earthquake ground motion; effects of damping and material nonlinearity; numerical methods using spreadsheets; response spectra. Response of structures modeled as multi-degree systems: modeling of structure mass, damping and elastic stiffness; solution by modal superposition; time-history and response spectrum analysis; implications for codes for earthquake-resistant design. Microcomputer software is extensively used.

CE 267. Structural Systems for Buildings. 3 Units
Prerequisite(s): CE 232 or instructor permission.
Term Typically Offered: Spring only – even years

Analyzes and design of various structural systems for buildings: frames, tubes, shear walls with or without openings and interaction between these types. Secondary effects such as P^*, material and geometrical nonlinearities.

CE 268. Pre-stressed Concrete Bridge Design. 3 Units
Prerequisite(s): CE 164 or instructor permission.
Term Typically Offered: Fall only – even years

Behavior and design of short and medium-span prestressed concrete bridges using American Association of State Highway and Transportation Officials (AASHTO) Load Resistance Factor Design (LRFD) specifications. Topics include: bridge types, aesthetics; design process; superstructure load types and live load analysis; limit states and load combinations; prestressed concrete materials; flexural analysis and design; shear analysis and design; and introduction to substructure analysis and design, including seismic design criteria. A team project is required.

CE 270. Advanced Soil Mechanics and Foundation Engineering I. 3 Units
Prerequisite(s): CE 170 and CE 170L or equivalent.
Term Typically Offered: Fall only – even years

Advanced analyses in soil mechanics and their practical applications in foundation engineering; compressibility of soils, settlement analysis, and tolerable settlement; lateral earth pressures and design of earth retaining structures; bearing capacity of shallow foundations; in-situ soil testing for foundation design; design of deep foundations, including driven piles, drilled shaft foundations, and laterally loaded piles.

CE 271. Advanced Soil Mechanics and Foundation Engineering II. 3 Units
Prerequisite(s): CE 170 and CE 170L or equivalent.
Term Typically Offered: Fall only – odd years

Advanced analyses in shear strength of cohesionless and cohesive soils, including stress-strain characteristics of soils, total and effective stress analyses; slope stability analyses for natural slopes, fill slopes, earth dams, levees, and methods of slope stabilization; analysis and design of anchored bulkheads, cellular cofferdams, soil nail walls, tieback walls, mechanically stabilized earth walls, and segmental retaining walls.
CE 272. Geotechnical Modeling. 3 Units
Prerequisite(s): CE 170 and CE 170L or equivalent.
Term Typically Offered: Spring only – even years
Advanced analysis principles and procedures for calculating monotonic and cyclic soil element response effective stress and pore water pressure distributions, dynamic site response, and soil deformations; application to analysis of complex geotechnical engineering systems such as levees, dams, and wharfs. Laboratory time devoted to numerical analysis software and physical element and small scale tests. Lecture two hours. Laboratory three hours.

CE 273. Ground Modification Engineering. 3 Units
Prerequisite(s): CE 170 and CE 170L or equivalent.
Term Typically Offered: Fall, Spring
Principles of soil stabilization and earth reinforcement; mechanical compaction and treatment of difficult soils, including expansive soils, collapsible soils, oversize materials, and compressible fill; prefabricated vertical drains and preloading; dynamic deep compaction; vibro compaction; vibro-replacement; rammed aggregate pier; compaction grouting; jet grouting; slurry grouting; chemical grouting; deep soil mixing; slurry trench walls.

CE 274. Soil Dynamics and Earthquake Engineering. 3 Units
Prerequisite(s): CE 170 and CE 170L.
Term Typically Offered: Spring only – odd years
Introduction to vibration theory; wave propagation in soils and dynamic behavior of soils and foundations; dynamic tests; analysis of dynamically loaded foundations; causes of earthquakes; earthquake magnitude and zones; ground motions induced by earthquakes; earthquake-resistant design of foundations and earth dams.

CE 275. Geosynthetics. 3 Units
Prerequisite(s): CE 170 and CE 170L or equivalent.
Term Typically Offered: Fall only – even years
Overview of geotextiles, geogrids and geonets; geosynthetic properties and test methods; geosynthetic functions and mechanisms as in separation, roadway and soil reinforcement, filtration, and drainage; applications and design methods; construction, fabrication and installation.

CE 281. Systems Analysis of Resources Development. 3 Units
Prerequisite(s): Graduate status or instructor permission.
Term Typically Offered: Spring only – even years
Investigation of resource planning using the “systems approach”. Objectives of resource development; basic economic and technological concepts, and economic factors affecting system design. Consideration of evaluation, institutional constraints, and uncertainty in water resources systems. Familiarization with modern computer techniques. Applications of concepts to air and land resources.

CE 289. Project Management for Civil Engineers. 3 Units
Prerequisite(s): Graduate standing or instructor permission.
Term Typically Offered: Spring only
Theory and practice of project management in civil engineering. Interrelationship of planning, design, and construction. New technologies and techniques used in both US and international architectural/engineering/construction (A/E/C) markets. Topics: Project initiation, early estimates, project budgeting, work plans, design proposals, scheduling, tracking, design coordination, construction, project close-out, team and personal management skills, and quality control.

CE 296D. Stormwater Management. 3 Units
Prerequisite(s): CE 137 and CE 170
Term Typically Offered: Fall, Spring

CE 296H. GIS Applications in Civil Engineering. 3 Units
Prerequisite(s): ENGR 115, CE 9 and CE 137 or CE 147 or CE 171A.
Term Typically Offered: Fall, Spring
Introduction to fundamental concepts of geographic information systems (GIS), methods, and applications in civil engineering. Design and develop GIS-based analytical methods and solutions for civil engineering problems. Lab exercises are used to design and practice GIS applications in civil engineering. This course may be paired with CE 196H.

CE 299. Special Problems. 1 - 3 Units
Term Typically Offered: Fall
Special problems in graduate research. Note: Approval of a petition must be obtained from the faculty supervising the work and the Department Graduate Program Coordinator. Letter grade or Credit/No Credit.
Credit/No Credit

CE 500. Culminating Experience. 3 - 6 Units
Prerequisite(s): Advanced to candidacy and permission of the faculty advisor and Department Chair.
Term Typically Offered: Fall, Spring
Successful completion of either: A. Thesis (3-6 units), or B. Project (3-6 units) or C. Directed Study and Examination (3 units). Plan A requires a thesis and is primarily research-oriented. Plan B requires a project report that is primarily application oriented. Plan C requires a detailed literature review or experimental data analysis resulting in a written report plus an examination by three faculty. A public presentation is required for all three plans.