ME 37. Manufacturing Processes. 3 Units
Term Typically Offered: Fall, Spring, Summer
Prerequisite(s): ENGR 110, ME 105.
Introduction to manufacturing processes in the areas of metal removal, forming, joining and casting of metal and nonmetal materials. Focus on the design and operation of machines. Study includes applications of equipment, e.g., lathes, milling machines, drill press, saw, grinder, welder, molding equipment and core makers. Emphasis on safety during hands-on operations. Two hours lecture, one three-hour lab.

ME 105. Introduction to Technical Problem Solving. 3 Units
Prerequisite(s): ENGR 17 and ENGR 30.
Term Typically Offered: Fall, Spring, Summer
Introduction to the use of computers for engineering, science and mathematical computations. Introduction to linear algebra and matrix applications. Introduction to concepts of programming and visualization using MATLAB and PBasic. Practical applications involving design using a microcontroller. Applications will be drawn from a variety of science and engineering areas. Lecture two hours, Laboratory three hours.

ME 108. Professional Topics for Mechanical Engineers. 2 Units
Prerequisite(s): MATH 31
Term Typically Offered: Fall, Spring
Introduction to statistical methods applied to analysis of engineering systems. Topics include data collection, distribution characteristics, probability, and decision-making under uncertainty. Introduction to economic analysis applied to engineering designs. Topics include marginal or incremental economic analysis using multiple standard methods while addressing organizational constraints and market factors. Investigations into the roles engineers play in society in working toward sustainability, and ethical decision-making in a technological world.

ME 114. Vibrations. 3 Units
Prerequisite(s): ENGR 110, ME 105.
Term Typically Offered: Fall, Spring

ME 115. Dynamics of Machinery and Multi-Body Systems. 3 Units
Prerequisite(s): ENGR 110, ME 105.
Term Typically Offered: Fall, Spring
Kinematic and kinetic analysis of mechanisms. Rigid and flexible multi-body assembly models in two and three dimensions. Use of solid modeling, dynamic analysis and finite element methods. Study of loads on linkages, cams, gears as integral functioning components of machines, ground and space vehicles. Study of forces and moments in machinery under impulsive and impact forces, balancing, and elements of vibration.

ME 116. Machinery Design I. 2 Units
Prerequisite(s): ENGR 6, ENGR 112, and ME 37. ENGR 112 and ME 37 may be taken concurrently.
Term Typically Offered: Fall, Spring
Introduction to basic design methodology for mechanical systems and devices. Detail design of machine components; application of analytical methods in the design of complex machines. Failure mode analysis, theories of failure, yield, fatigue, and failure analysis of machine elements. Design of common machine elements such as bearings and shafts.

ME 117. Machinery Design II. 2 Units
Prerequisite(s): ME 116.
Term Typically Offered: Fall, Spring
Introduction to design of machine components; application of analytical methods in the design of complex machines. Design of common machine elements such as threaded fasteners, springs, flexible drive components, gears, and friction devices. Introduction to stress and deflection analysis using finite element software.

ME 121. Solar Thermal and Energy Storage Systems. 2 Units
Prerequisite(s): ENGR 124.
Term Typically Offered: Fall, Spring
Study of solar thermal heat and power and energy storage including the characterization, theory, operation, analysis and modeling of solar thermal and energy storage systems.

ME 122. Geothermal and Bioenergy Systems. 2 Units
Prerequisite(s): ENGR 124.
Term Typically Offered: Fall, Spring
Study of geothermal and bioenergy systems including the characterization, theory, operation, analysis and modeling.

ME 123. Wind, Hydro and Ocean Energy. 3 Units
Prerequisite(s): ENGR 124 and ENGR 132.
Term Typically Offered: Fall, Spring
Exploring sustainable energy and power generation, through study of wind, hydro and ocean energy systems, including the characterization, theory, operation, analysis, modeling, planning impacts and design process.

ME 126. Heat Transfer. 3 Units
Prerequisite(s): ENGR 124 and ENGR 132.
Term Typically Offered: Fall, Spring, Summer
Basic principles of heat transfer, including processes of conduction, convection, radiation, evaporation and condensation. Lecture three hours.

ME 126W. Heat Transfer Workshop. 1 Unit
Corequisite(s): ME 126.
Term Typically Offered: Fall, Spring, Summer
Problem solving and discussion of heat transfer to enhance students' understanding of subject matter.

Note: May be repeated for credit.

Credit/No Credit
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisite(s)</th>
<th>Term Typically Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 128</td>
<td>Thermal-Fluid Systems</td>
<td>3</td>
<td>ENGR 124</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): ENGR 124.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals of the Otto, Diesel, Brayton and Rankine power cycles, vapor-compression refrigeration, psychrometric processes and chemical reactions. Theory and application of temperature, pressure, flow, and velocity instruments, introduction to experiment design, errors, uncertainty and data acquisition, data analysis and presentation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 136</td>
<td>Numerical Control Programming.</td>
<td>3</td>
<td>ME 37 and ME 105; ME 105 may be taken concurrently.</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): ME 37; ME 105.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer programming languages for automated manufacturing, including CNC manual programming, cutter compensation, geometric definition of products, cutting tool definition, continuous path part programming, computation, decision, looping, computer graphics programming and intelligent machines.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 137</td>
<td>Product Design for Manufacturing and Automation.</td>
<td>3</td>
<td>ME 117</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): ME 117.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Various manufacturing and automation aspects of product design, including design for machining, design for automation, applications of CAD/CAM software in product design and automation, and rapid prototyping. Virtual design and manufacturing and agile manufacturing will also be discussed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 138</td>
<td>Concurrent Product and Process Design.</td>
<td>3</td>
<td>ME 117, ME 37 and ME 116.</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): ME 37; ME 116.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturing considerations in product design including: design for manufacturing (DFM), design for assembly (DF A), design to cost (DTC), design to life cycle cost (DTLCC), design for quality and reliability (DFQR); introduction to concurrent engineering. Two hours lecture, three-hour lab.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 140</td>
<td>Introduction to Motors and Actuators.</td>
<td>2</td>
<td>ME 172 or EEE 184.</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): ME 117.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power conversion hardware used in electromechanical systems. Operation and sizing of electric motors, both DC and AC systems, motor controllers, and power electronics; sensors; design in fluid power systems, both pneumatic and hydraulic; and power transmission systems such as ball screws and belt drivers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 141</td>
<td>Introduction to Tolerance Analysis.</td>
<td>2</td>
<td>ME 116</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): ME 116.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to techniques used in manufacturing tolerance analysis. Assembly tolerance analysis using standard industry practices; application of geometric dimensioning techniques to tolerance analysis; drawing practices for indicating dimensional tolerances; statistical techniques; tolerance allocation. Introduction to computer aided tolerance analysis.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 143</td>
<td>Vehicle Dynamics and Design.</td>
<td>3</td>
<td>ENGR 110 and ME 117.</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): ENGR 110 and ME 117.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 151</td>
<td>Fundamentals of Combustion.</td>
<td>3</td>
<td>Fall, Spring</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): ENGR 124, ENGR 132, ME 105.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Principles of combustion and pyrolysis of gaseous, liquid, and solid materials. Applications of principles, including analysis and design of stationary and mobile powerplants, waste management, and fire safety.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 152</td>
<td>Turbomachinery Design.</td>
<td>3</td>
<td>ME 105</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): ME 105.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theoretical analysis of energy transfer between fluid and rotor; principles of axial, mixed, and radial flow compressors and turbines. Applications and computer-aided design of various types of turbomachines.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 153</td>
<td>Thermodynamics of Combustion Engines.</td>
<td>3</td>
<td>ENGR 124, ENGR 132, ME 105.</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): ENGR 124, ENGR 132, ME 105.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Application of thermodynamic and fluid mechanical analysis to various kinds of engines, including those based on Otto, Diesel, Brayton, Rankine, and Stirling cycles. Development of computer models and comparison of cycles in terms of applications to land, marine, and aerospace propulsion.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 154</td>
<td>Alternative Energy Systems.</td>
<td>3</td>
<td>ENGR 124</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): ENGR 124.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study of alternative energy technologies, such as renewable fuels, wind, solar, oceanic and geothermal power. Concentration on fundamental thermodynamic principles, modern design features and non-technical aspects of each technology.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 155</td>
<td>Gas Dynamics.</td>
<td>3</td>
<td>ME 105</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): ENGR 124.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 156</td>
<td>Heating and Air Conditioning Systems.</td>
<td>3</td>
<td>ENGR 124, ENGR 132.</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td></td>
<td>Prerequisite(s): ENGR 124, ENGR 132.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theory and design of heating, ventilating and air conditioning for industrial and comfort applications. Topics include refrigeration cycles, heating and cooling load calculations, psychrometrics, solar heating and cooling component, and system design.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ME 157. Solar Energy Engineering. 3 Units
Prerequisite(s): ME 126; may be taken concurrently.
Term Typically Offered: Fall, Spring

In-depth study of the basics of solar engineering, including the nature and availability of solar radiation; operation, theory and performance of solar collectors; energy storage and model of solar systems.

ME 159. High Efficiency HVAC. 3 Units
Prerequisite(s): ME 156 or instructor permission.
Term Typically Offered: Fall, Spring

Starts with a review of the theory and design of HVAC systems. Recent improvements and new developments in cooling and heating equipment are studied in detail. Computer models such as the Trane TRACE Program are used to size an HVAC system with an emphasis on high efficiency. Computer based controls and energy management systems are discussed and demonstrated. Field trips to energy efficient installations are included. Field trip(s) may be required.

ME 164. Introduction to Test Automation. 3 Units
Prerequisite(s): ME 105, ME 117.
Term Typically Offered: Fall, Spring

Basic concepts to automate testing procedures. Introduction to sensors, signal conditioning, sampling theory, design of experiments, data acquisition software, and data reduction techniques. Hands-on experience with PC based data acquisition software and hardware which will be used to create testing programs. Lecture two hours; laboratory three hours.

ME 165. Introduction to Robotics. 3 Units
Prerequisite(s): ME 105, ME 116
Term Typically Offered: Fall, Spring

Fundamentals of design and application of industrial robotics. Manipulator kinematics, trajectory planning and controller design, design of end effectors and actuators, sensors, programming languages, and machine vision. Applications in manufacturing, approach to implementing robotics, economic analysis for robotics. Lecture two hours; laboratory three hours.

ME 171. Modeling and Simulation of Mechatronics and Control Systems. 3 Units
Prerequisite(s): ENGR 110, ME 105.
Term Typically Offered: Fall, Spring, Summer

Computer modeling and mathematical representation of mechanical, electrical, hydraulic, thermal, and electronic systems or combinations of these. Development of system design criteria and solutions using computer simulation. Use of state of the art automated modeling and simulation methods to build models of multi-energy mechatronics and control systems. Vibration concepts, applied, natural frequencies, eigenvectors, and solution of differential equations using computer simulation. Introduction to state variable feedback control systems. A design project is required.

ME 172. Control System Design. 3 Units
Prerequisite(s): ME 171.
Term Typically Offered: Fall, Spring, Summer

Use of mathematical models for the generation of equations of motion for mechanical and electrical systems. Evaluation of single and multiple degrees of freedom systems in the time and frequency domain. Topics include feedback control systems, Laplace transform, state space representation, transfer functions, error analysis, stability of control systems and system response. Automatic control system design using root locus and frequency response methods. Design of compensating controls using state of the art software and automation tools. Introduction to digital control.

ME 173. Applications of Finite Element Analysis. 3 Units
Prerequisite(s): ENGR 112, ME 105.
Term Typically Offered: Fall, Spring

ME 176. Product Design & CAD. 3 Units
Prerequisite(s): ENGR 6, ME 105 and ME 116.
Term Typically Offered: Fall, Spring

Digital product development using an integrated CAD system. Philosophy of parametric design. Component and assembly design, basic drawing creation, and simulations. Team product design investigating the effects of variations in geometry, dimensions, and material selection. Lecture two hours; laboratory three hours.

ME 177. Product Design and 3D Parametric Solid Modeling. 3 Units
Prerequisite(s): ENGR 6, ME 105 and ME 116.
Term Typically Offered: Fall, Spring

Introduction to Solid Modeling and its application to mechanical product design. Digital product development using 3D Parametric Solid Modeling tools. Also covers component and assembly design, basic drawing creation. Reverse design project engineering investigating the effects of variations in geometry, dimensions, and material selection. Lecture two hours; laboratory three hours.

ME 180. Mechanical Properties of Materials. 3 Units
Prerequisite(s): ENGR 112
Term Typically Offered: Fall, Spring, Summer

Principles of mechanical properties of metals, including strength under combined loads, fatigue, and fracture mechanics. Laboratory includes study of strengthening mechanisms, and principles of experimental stress analysis. Lecture two hours; Laboratory three hours.

ME 180W. Mechanical Properties of Materials Workshop. 1 Unit
Corequisite(s): ME 180.
Term Typically Offered: Fall, Spring, Summer

Problem solving and discussion of mechanical properties of materials to enhance students' understanding of subject matter.

Credit/No Credit
ME 182. Introduction to Composite Materials. 3 Units
Prerequisite(s): ME 180.
Term Typically Offered: Fall, Spring

Properties, mechanics, and applications of anisotropic fiber-reinforced materials with an emphasis on the considerations and methods used in the design of composite structures.

ME 184. Corrosion and Wear. 3 Units
Prerequisite(s): ME 180.
Term Typically Offered: Fall, Spring

Introduction to the phenomena of corrosion and wear, including the electro-mechanical bases of corrosion, examples of corrosion of iron, steel and stainless steels, and prevention of corrosion. Fundamentals of wear are covered including effects of loads, material properties, and lubrication on wear rates.

ME 186. Fracture Mechanics in Engineering Design. 3 Units
Prerequisite(s): ME 180.
Term Typically Offered: Fall, Spring

Fracture mechanics approach to mechanical design; role of microstructure in fracture toughness and embrittlement; environmentally-induced cracking under monotonic and fatigue loads; laboratory techniques; service failures in various industries and failure mechanisms.

ME 190. Project Engineering I. 3 Units
Prerequisite(s): ME 117
General Education Area/Graduation Requirement: Further Studies in Area B (B5)
Term Typically Offered: Fall, Spring, Summer

Beginning of a two semester project; design of a product, device, or apparatus that will be fabricated in ME 191. Students work in small groups, interacting with product users, vendors, technicians, and faculty advisors. Lecture two hours; laboratory three hours.

ME 191. Project Engineering II. 2 Units
Prerequisite(s): ME 190.
Term Typically Offered: Fall, Spring, Summer

Continuation of the project begun in ME 190. Part II consists of fabrication and assembly of equipment, testing and evaluation, and reporting. Seminar one hour; laboratory three hours.

ME 194. Career Development in Mechanical Engineering. 1 Unit
Prerequisite(s): Senior status.
Term Typically Offered: Fall, Spring

Designed for Mechanical Engineering students making career decisions. Instruction will include effective career planning strategies and techniques including skill assessment, employment search strategy, goal setting, time management, interview techniques and resume writing. Lecture one hour.

Credit/No Credit

ME 195. Professional Practice. 1 - 6 Units
Prerequisite(s): Instructor permission.
Term Typically Offered: Fall, Spring

Supervised employment in a professional engineering or computer science environment. Placement arranged through the College of Engineering and Computer Science. Requires satisfactory completion of the work assignment and a written report.

Credit/No Credit

ME 195A. Professional Practice. 1 - 12 Units
Prerequisite(s): Instructor permission.
Term Typically Offered: Fall, Spring

Supervised employment in a professional engineering or computer science environment. Placement arranged through the College of Engineering and Computer Science. Requires satisfactory completion of the work assignment and a written report.

Credit/No Credit

ME 196A. Motion and Dynamic Analysis using Solid Modeling. 3 Units
Prerequisite(s): ENGR 6 and ME 117.
Term Typically Offered: Fall, Spring

Practical approach to study of motion and dynamic analysis of machine components and assemblies in two or three dimensions. Uses solid modeling software to analyze the forces, moments and dynamic loads for parts and entire assemblies in motion. Topics include stress and strain during motion, kinematics, kinetics, drop tests in two and three dimensions, frequency analysis, buckling, dynamic fatigue and finite element analysis, time history of motion, harmonics, and vibrations.

ME 196B. Engineering Systems Approach to Product Design. 2 Units
Prerequisite(s): ME 116
Term Typically Offered: Fall, Spring

Study of product design process and formal design methodologies. Various topics in product and system design including creativity, visualizations and communications, human factors, design for X methodology decision science, economics, product design and robust quality design.

ME 196C. Computer Programming for Mechanical Engineering Applications. 2 Units
Prerequisite(s): ME 105
Term Typically Offered: Fall, Spring

Computer programming languages such as C/C++, Java, Processing, and their applications to engineering problem solving using computer graphics, simulations, and physical prototyping. Programming computer communications with microprocessors for controlling sensors and motors.

ME 196D. Ground Vehicle Aerodynamics. 3 Units
Prerequisite(s): ENGR 132
Term Typically Offered: Fall, Spring

Fundamental and applied subjects of aerodynamics for ground vehicle design and performance including flow features, aerodynamic forces, drag reduction strategies, and different methodologies for evaluation of aerodynamic forces and vehicle design. Numerical modeling approaches with experience of running a commercial computational fluid dynamics program. Units: 3 Units (2 Unit Lecture and 1 Unit Lab)
ME 199. Special Problems. 1 - 3 Units
Term Typically Offered: Fall, Spring

Individual projects or directed reading.

Note: Open only to students who appear competent to carry on individual work. Admission requires approval of an instructor and the student's advisor. May be repeated for credit.

Credit/No Credit
ME 238. Automated Inspection. 3 Units
Prerequisite(s): ME 105, ME 138.
Term Typically Offered: Fall, Spring

Introduction to measurement for machine accuracy and process quality including the use of coordinate measuring machines; system considerations and sensor technology in automated visual inspection; applications of pattern recognition in automated inspection.

ME 240. Mechanical Design Analysis. 3 Units
Prerequisite(s): ENGR 201; ENGR 201 may be taken concurrently.
Term Typically Offered: Fall, Spring

Analyzes mechanical designs with respect to strength or deformation criteria. Elastic and inelastic failure criteria, energy methods, effects of temperature, stress concentrations, and fatigue are discussed.

ME 241. Optimum Mechanical Design. 3 Units
Prerequisite(s): ENGR 201; ENGR 201 may be taken concurrently.
Term Typically Offered: Fall, Spring

Mathematical methods of optimum design using linear and nonlinear optimization; constrained and unconstrained optimum design. Optimization of mechanical elements and assemblies to meet design requirements, material characteristics and geometry. Numerical methods and computer usage in optimal design. Application of these principles to realistic design problems.

ME 250. Heat Transfer: Conduction. 3 Units
Prerequisite(s): ME 126, ENGR 202; ENGR 202 may be taken concurrently.
Term Typically Offered: Fall, Spring

ME 251. Heat Transfer: Convection. 3 Units
Prerequisite(s): ME 126, ENGR 201; ENGR 201 may be taken concurrently.
Term Typically Offered: Fall, Spring

Analyzes convective heat and mass transfer. Development of the Navier-Stokes and energy equations for two-dimensional flows. Boundary layer theory and numerical techniques in solving convection problems. Analyzes turbulence, transport by Reynolds stresses and Prandtl's mixing length theory.

ME 252. Heat Transfer: Radiation. 3 Units
Prerequisite(s): ME 126, ENGR 202.
Term Typically Offered: Fall, Spring

ME 253. Advanced Fluid Mechanics. 3 Units
Prerequisite(s): ENGR 132, graduate status.
Term Typically Offered: Fall, Spring

Analytical and numerical analysis of Navier-Stokes equations for laminar flow; stability of laminar flow and its transition to turbulence. Analyzes stream functions and the velocity potential, and vorticity dynamics. The mathematical analysis of incompressible turbulent flows; development of Reynolds stress equations, turbulent boundary layer equations, turbulent flow in pipes and channels, and turbulent jets and wakes.

ME 255. Advanced Heat Transfer. 3 Units
Term Typically Offered: Fall, Spring

Advanced topics in heat transfer including analytical and numerical solutions to heat conduction equations in both the steady and unsteady state; use of approximate and analytical techniques for the prediction of convective heat transfer in laminar and turbulent flows, heat transfer in high-velocity flows; analysis of the nature of thermal radiation and radiative heat transfer in enclosures.

ME 256. Mechanics and Thermodynamics of Compressible Flow. 3 Units
Prerequisite(s): ENGR 201 or ENGR 202; ENGR 201 or ENGR 202 may be taken concurrently.
Term Typically Offered: Fall, Spring

Application of the laws of fluid mechanics and thermodynamics to problems of compressible flow in two and three dimensions; small perturbation theory, hodograph method and similarity rules for subsonic flow. Method of characteristics, shock wave analysis for steady, unsteady and supersonic, one-dimensional flows.

ME 258. Advanced Thermodynamics. 3 Units
Prerequisite(s): ENGR 202.
Term Typically Offered: Fall, Spring

Advanced topics in thermodynamics including applications of fundamental postulates to chemical, mechanical, magnetic and electric systems, theory of fluctuations, and irreversible thermodynamics.

ME 259. Introduction to Computational Fluid Dynamics. 3 Units
Prerequisite(s): ENGR 132, ME 105 and ME 126.
Term Typically Offered: Fall, Spring

Fundamentals of computational fluid dynamics, modeling of physical processes, including the fluid flow, heat and mass transfer, and computer skills. Basic concepts of numerical analysis using computer, including the solutions of ordinary and partial differential equations. Basic hands-on experience on using commercial computational fluid dynamics software packages.

ME 270. Advanced Computer-Aided Design of Dynamic Systems. 3 Units
Prerequisite(s): ME 114 or ME 171.
Term Typically Offered: Fall, Spring

Computer analysis, synthesis and modeling of physical systems including single and multiple degree of freedom, and linear/nonlinear systems. Use of Computer-Aided Modeling software (CAMP-G) and Advanced Digital Simulation Languages (ADSL). Design and analysis of multi-energy systems using Block Diagrams, Bond Graphs, and state space equation representation. Design of electromagnetic, electro-hydraulic servomechanisms, actuators and driven systems; introduction to multi-variable control of complex systems; stability, controllability, and observability.
ME 272. Finite Element Modeling in Computer-Aided Design. 3 Units
Prerequisite(s): ME 105, ME 173.
Term Typically Offered: Fall, Spring

Finite-element methods in the analysis and optimal design of machine components, structures, and distributed systems. Generation of FEA models using computers. Theoretical and practical application of a finite element code such as PATRAN to the solution of engineering problems. Topics include static and vibration analysis, stress analysis buckling, normal modes, direct and modal frequency response, transient analysis, and heat transfer.

ME 273. Multibody Dynamics of Rigid and Flexible Systems. 3 Units
Prerequisite(s): Graduate standing.
Term Typically Offered: Fall, Spring

Analysis and design of rigid and flexible multi-body assemblies in two and three dimensions with applications to mechanisms, machinery, ground and space vehicles. Kinematic and kinetic analysis in two and three dimensions; impulsive and impact forces; modes of vibration. Use of solid modeling, dynamic analysis and finite element analysis methods.

ME 274. Introduction to Flight Dynamics. 3 Units
Prerequisite(s): MATH 45, ENGR 110.
Term Typically Offered: Fall, Spring

ME 275. Analysis of Aircraft Structures. 3 Units
Prerequisite(s): Graduate standing.
Term Typically Offered: Fall, Spring

ME 276. Advanced Vibration Theory. 3 Units
Prerequisite(s): ME 114, ME 171, or CE 166.
Term Typically Offered: Fall, Spring

ME 278. Space Systems Engineering Management. 3 Units
Prerequisite(s): ENGR 110.
Term Typically Offered: Fall, Spring

Systems Engineering approach to plan and direct engineering projects. Emphasizes systems engineering process, requirement design fundamentals, subsystem fundamentals, trade studies, integration, technical reviews, case studies and ethics. Space exploration used as an example; skills applicable to any engineering project. Project-oriented course to plan the design of space and ground vehicles, satellites, airplanes and multidisciplinary subsystems.

ME 280. Advanced Mechanical Properties of Materials. 3 Units
Prerequisite(s): ME 180
Term Typically Offered: Fall, Spring

Mechanical properties of materials, with special attention to dislocations/defects and deformation and fracture control mechanisms. Mechanical properties of conventional engineering materials as well as advanced materials such as nanostructured materials are considered. Effects of defects on mechanical behavior at ambient and elevated temperature are discussed with attention given to strengthening mechanisms, creep, fatigue and fracture.

ME 285. Materials for Extreme Environments. 3 Units
Prerequisite(s): ME 180 or PHYS 110
Term Typically Offered: Fall, Spring

Comprehensive study of material applications in extreme environments, with special attention to mechanical, thermal and electronic behavior. Extreme temperature, pressure, corrosive or toxic environments and high rate deformation are considered. Currently available materials as well as emerging materials are explored for specific applications such as undersea, outer space, ballistic, nuclear, combustion, and other extreme application arenas.

ME 295. Fieldwork. 1 - 3 Units
Prerequisite(s): Permission of Graduate Coordinator or Department Chair.
Term Typically Offered: Fall, Spring

Supervised employment in industry or government that provides practical work experience. Requires satisfactory completion of the work assignment and a written report.
Note: Units may not be applied toward meeting the 30-unit requirement of the degree.

Credit/No Credit

ME 296L. Creative Engineering Design for Quality Products. 3 Units
Prerequisite(s): ME 138 and ME 180.
Term Typically Offered: Fall, Spring

Introduction to analytical and systematic design methodologies in creative and quality product design. Topics include product design process, creative conceptual design tools such as axiomatic design, theory of inventive problem solving (TRIZ), and engineering decision making. Quality product design including design of experiments, robust design techniques, and design optimization. Assignments include application of these principals to solving open-ended design problems using computing tools. Two hour lecture; Three hour laboratory.

ME 296O. Advanced Heat Transfer. 3 Units
Prerequisite(s): ME 126 and ENGR 202.
Corequisite(s): ENGR 202.
Term Typically Offered: Fall, Spring

Advanced topics in heat transfer including analytical and numerical solutions to heat conduction equations in both the steady and unsteady state; use of approximate and analytical techniques for the prediction of convective heat transfer in laminar and turbulent flows, heat transfer in high-velocity flows; analysis of the nature of thermal radiation and radiative heat transfer in enclosures.
ME 296P. Advanced Dynamics. 3 Units
Prerequisite(s): Graduate Standing
Term Typically Offered: Fall, Spring

ME 296Q. Advanced Solid Modeling. 3 Units
Prerequisite(s): Student must pass ME 116.
Term Typically Offered: Fall, Spring

Advanced topics in computer-aided design for mechanical product design. Reviews on fundamental part and assembly modeling, and engineering drawings. Advanced modeling topics such as surface modeling, top-down assembly, macros and API programming, manufacturing oriented design such as sheet metal, plastic and mold design.

ME 296S. Advanced CAD for Aerospace Applications. 3 Units
Term Typically Offered: Fall, Spring

Design of aerospace systems including profile definition, constraints, operations and visualizations, component design, transformation features, and insertions using advanced CAD software such as CATIA. Creation of complete assembly design including creation of product files, identifying, inserting and displacing components, constraining parts, numbering parts and scene creation. Specifics of sheet metal design for aerospace design including creation of flange, cut-out, joggle, holes, stampings and patterns.

ME 296U. Advanced Computer-Aided Product Design. 3 Units
Prerequisite(s): ENGR 6 and ME 116, or graduate-level status
Term Typically Offered: Fall, Spring

Advanced topics in computer-aided design and applications for mechanical product design. Reviews of fundamental parts, assembly modeling, and engineering drawings. Advanced modeling topics such as surface modeling, design for manufacturing, simulation-based design, top-down assembly, macros and API programming.

ME 296V. Advanced Control System Design. 3 Units
Prerequisite(s): ME 172

Design of Multi-Input/Multi-Output controllers using linear quadratic regulator method and advanced controls architectures. Architectures include Proportional, Proportional Integrator and Proportional Integrator Derivative (filter) schemes. The course also includes Digital Control, Optimal Control, Introduction to Guidance, Navigation and Control techniques.

ME 296W. Accident Biomechanics. 3 Units
Prerequisite(s): ENGR 110

Study of the interaction of human body kinematics and dynamic biomechanics in accidents involving human activities and vehicles. Impact injury mechanisms, response of the human body using computer models and software analysis tools. Biomechanical response to impact, and tolerance levels. Human factors that influence the biomechanical reactions of people with their vehicles and the environment. Photographic and video analysis, computer graphics, and computer simulations. Forensic engineering to determine the dynamic forces that cause injury in different situations.

ME 299. Special Problems. 1 - 3 Units
Term Typically Offered: Fall, Spring

Any properly qualified student who wishes to pursue a problem of his/her own choice may do so if the proposed subject is acceptable to the faculty member with whom he/she works and to his/her advisor.

ME 500. Master’s Thesis. 1 - 6 Units
Prerequisite(s): Open to students who have advanced to candidacy and have secured approval of a Thesis proposal form one full semester prior to registration.
Term Typically Offered: Fall, Spring

Completion of a thesis. Credit given upon successful completion of a Master’s Thesis (4 - 6 units; maximum 6 units).

Note: Course may be repeated for no more than 6 units total.